HONORS - Unit 10 - Chapter 19 Study Guide Acids & Bases

1) List the equations that are used for pH calculations.

2) Use those equations to find the missing information in the following chart.

	[Solution]	[H ⁺]	pН	рОН	[OH ⁻]	Acidic/Basic?
a	0.5 M HCl					
b	M HCI		4.5			
c	M NaOH			6.5		
d	0.0015 <i>M</i> NaOH					

- 3) What is the **Arrhenius** definition?
 - a) Acid -
 - b) Base -
- 4) What is the **Brönsted-Lowry** definition?
 - a) Acid -
 - b) Base -
- 5) Identify the Acid, Base, Conjugate Acid, and Conjugate Base.

$$CH_3NH_{2(1)} + H_2O_{(1)} \rightarrow CH_3NH_3^+_{(aq)} + OH_{(aq)}^-$$

$$HSO_{3^{-}(aq)} + H_{2}O_{(I)} \rightarrow H_{2}SO_{3(aq)} + OH_{(aq)}$$

$$H_2PO_4^-(aq) + H_2O_{(1)} \rightarrow HPO_4^{2-}(aq) + H_3O^+(aq)$$

- 6) Explain which will have a lower pH, a 1.0 M solution of HCl or a 1.0 M solution of HC₂H₃O₂.
- 7) Why is HCl considered to be a stronger acid than HC₂H₃O₂?

8) Shown to the right is a titration curve:
A) Was the starting solution (Titrand) a strong/weak acid or a strong/weak base?

HONORS - Unit 10 - Chapter 19 Study Guide **Acids & Bases**

Shown to the right is a titration curve:

- 9) A) Was the starting solution (Titrand) a
 - strong/weak acid or a strong/weak base?

- B) Was the solution added to it during the titration a strong/weak acid or a strong/weak base?
- Mark the equivalence point of each of the titration curves in questions #8 and #9. 10) Explain why the equivalence point should be above seven, below seven, or equal to seven?
- Identify each of the following compounds. 11)

a) HNO ₂	strong acid	weak acid	strong base	weak base	neutral
b) NaCl	strong acid	weak acid	strong base	weak base	neutral
c) Ca(OH) ₂	strong acid	weak acid	strong base	weak base	neutral
d) HI	strong acid	weak acid	strong base	weak base	neutral

- What is the definition of the equivalence point of a titration? 12)
- 13) What are you trying to find in a titration?
- 14) 50 mL of a solution of HBr is added to a flask along with a few drops of phenolpthalein indicator. When 30 mL of 0.50 M NaOH are added, the solution turns pink.
 - a) How many moles of OH- were added?
 - b) How many moles of H⁺ must have been present originally?
 - c) What was the concentration of the original HBr solution?
 - d) Should the pH at the equivalence point be above, below, or equal to seven?
- 20 mL of a Ba(OH)₂ solution are added to a flask along with a few drops of bromothymol blue 15) indicator. When 43 mL of a 0.10 M HC₂H₃O₂ solution are added, solution changes from blue to yellow.
 - a) How many moles of H⁺ were added?
 - b) How many moles of OH⁻ must have been present originally?
 - c) **CHALLENGE**: What was the concentration of the original Ba(OH)₂ solution?
 - d) Was the pH at the equivalence point above, below, or equal to seven?