Unit 9 - Solutions \& Equilibrium Twitter Review Questions

U9-1: Identify THREE ways in which a solute is able to dissolve FASTER in water:
A)
B)
C)

- Answer: A) Increase temp of reaction
C) Increase surface area of solute
B) Agitate/stir solution

U9-2: What is the max amount (grams) of NaNO 3 that can dissolve in $350 . \mathrm{g}$ of H 2 O at $30^{\circ} \mathrm{C}$ if its solubility is $20.0 \mathrm{~g} / 100 \mathrm{~g} \mathrm{H} 2 \mathrm{O}$ at this temp?

- Answer: $70.0 \mathrm{~g} \mathrm{NaNO}_{3}$

U9-3: On a solubility curve, solids have a \qquad slope and gases have a \qquad slope.

- Answer: positive ; negative

U9-4: Explain why most solid solutes increase solubility as temperature increases.

- Answer: Greater kinetic energy for greater solvation

U9-5: Which of the following would MOST likely dissolve in water? : $\mathrm{AgBr}, \mathrm{BF} 3, \mathrm{NaC} 2 \mathrm{H} 3 \mathrm{O} 2$, or Cl 2

- Answer: From solubility rules $=\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$

U9-6: What is the concentration of a solution that contains 5.50 moles of KClO 3 in 255 mL of solution?

- Answer: $21.6 \mathrm{M} \mathrm{KClO}_{3}$

U9-7: When solvent is added to dilute a solution, the concentration of dilute solution changes (decreases). However, what will NOT change?

- Answer: moles of solute

U9-8: What type of compound dissociates when dissolved in water? (Think of the solvation process)

- Answer: Ionic Compound

U9-9: What is the definition of solubility? Be very specific.

- Answer: Ability of an amount of solute (grams) to dissolve in a given amount of solvent (grams) at a given temperature

U9-10: If solubility of LiBr is $90 \mathrm{~g} / 100 \mathrm{~g} \mathrm{H} 2 \mathrm{O}$ at $40^{\circ} \mathrm{C}$, give ANY soln conc. representing an unsaturated soln. (Express as $\mathrm{g} / 100 \mathrm{~g} \mathrm{H} 2 \mathrm{O}$ at \qquad ${ }^{\circ} \mathrm{C}$)

- Answer: Any amount of LiBr LESS THAN 90g LiBr / 100g H2O at $40^{\circ} \mathrm{C}$

U9-11: How many grams of sodium chloride should be used to prepare 450 . mL of a 3.50 M solution of sodium chloride?

- Answer: $\mathrm{mol}=(\mathrm{M})\left(\mathrm{L}_{\text {soln }}\right) ; \mathrm{mol} \rightarrow \mathrm{g} \rightarrow 92.0 \mathrm{~g} \mathrm{NaCl}$

U9-12: What volume of water (in overall solution) should be used to prepare a 0.250 M solution of NaNO3 from 125 grams of NaNO 3 ?

- Answer: 1) $\mathrm{g} \rightarrow \mathrm{mol} \quad$ 2) $\mathrm{L}_{\text {soln }}=\mathrm{mol} / \mathrm{M} \rightarrow 5.88 \mathrm{~L} \mathrm{H}_{2} \mathrm{O}$

U9-13: When any amount of solute is added to an already saturated solution, what will happen? Be very specific.

- Answer: Solute will NOT dissolve and will SETTLE to the bottom

U9-14: A decrease in temperature increases the solubility of what types of solutes?

- Answer: Gas solutes

U9-15: When 85.0 mL of 2.50 M H 2 SO 4 is diluted to 275 mL , what is the resulting concentration?

- Answer: $\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2} \rightarrow \mathrm{M}_{2}=0.773 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$

U9-16: Increasing the temperature of an exothermic reaction will favor the production of more
\qquad -

- Answer: EQ shifts left \rightarrow Reactants

U9-17: Calculate for EQ constant (K): _ $\mathrm{CO}(\mathrm{g})+\ldots \mathrm{H} 2(\mathrm{~g})<->\ldots \mathrm{CH} 4(\mathrm{~g})+\ldots \mathrm{H} 2 \mathrm{O}(\mathrm{g})$ if $[\mathrm{CO}]=0.500 \mathrm{M},[\mathrm{H} 2]=1.50 \mathrm{M},[\mathrm{CH} 4]=0.150 \mathrm{M}, \&[\mathrm{H} 2 \mathrm{O}]=0.250 \mathrm{M}$.

- Answer: $1,3,1,1 \rightarrow \mathrm{~K}=\left[\mathrm{CH}_{4}\right]\left[\mathrm{H}_{2} \mathrm{O}\right] /[\mathrm{CO}]\left[\mathrm{H}_{2}\right]^{3} \rightarrow \mathrm{~K}=0.0222$

U9-18: At equilibrium, what is true about the concentration of reactants and concentration of products? Be very specific.

- Answer: Rate Forward Reaction = Rate Reverse Reaction \rightarrow At EQ, concentration of reactants and products remain UNCHANGED

U9-19: Using a solubility curve, what is the solubility of KCl at $80^{\circ} \mathrm{C}$?

- Answer: At $80^{\circ} \mathrm{C} \rightarrow 50 \mathrm{~g} \mathrm{KCl} / 100 \mathrm{~g} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$

U9-20: Using a solubility curve, what is the CHANGE in solubility of KCIO 3 from $50^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$? (Express as grams $\mathrm{KClO} 3 / 1^{\circ} \mathrm{C}$)

- Answer: At $50^{\circ} \mathrm{C}=20 \mathrm{~g} \mathrm{KClO}_{3} / 100 \mathrm{~g} \mathrm{H} \mathrm{H} \mathrm{O} ;$ At $80^{\circ} \mathrm{C}=40 \mathrm{~g} \mathrm{KClO} 3 / 100 \mathrm{~g} \mathrm{H} \mathrm{H}_{2} \mathrm{O} ; \quad \Delta \mathrm{g}=20 \mathrm{~g}$ $\mathrm{KClO}_{3} ; \Delta \mathrm{T}=30^{\circ} \mathrm{C} \rightarrow 20 \mathrm{~g} \mathrm{KClO}_{3} / 30^{\circ} \mathrm{C}=0.67 \mathrm{~g} \mathrm{KClO}_{3} / 1^{\circ} \mathrm{C}$

U9-21: Using a solubility curve, 230 g of NH 4 Cl is dissolved in 300 g of water at $90^{\circ} \mathrm{C}$. Is solution saturated, unsaturated, or supersaturated?

- Answer: At $90^{\circ} \mathrm{C} \rightarrow 70 \mathrm{~g} \mathrm{NH} 44 \mathrm{Cl} / 100 \mathrm{~g} \mathrm{H} \mathrm{O}=210 \mathrm{~g} \mathrm{NH} 44 \mathrm{Cl} / 300 \mathrm{~g} \mathrm{H} \mathrm{H}_{2} \mathrm{O} \rightarrow \quad 230 \mathrm{~g}>$ $210 \mathrm{~g} \rightarrow$ SUPERSATURATED

U9-22: Using a solubility curve, if 55 g KCl are stirred in 55 g H 2 O at $80^{\circ} \mathrm{C}$:
A) Should all solute dissolve?
B) How much will/will not?

- Answer: At $80^{\circ} \mathrm{C} \rightarrow 50 \mathrm{~g} \mathrm{KCl} / 100 \mathrm{~g} \mathrm{H} \mathrm{H}_{2} \mathrm{O}=27.5 \mathrm{~g} \mathrm{KCl} / 55 \mathrm{~g} \mathrm{H} \mathrm{O} \rightarrow$ SUPERSATURATED \quad B) $55 \mathrm{~g}-27.5 \mathrm{~g}=27.5 \mathrm{~g} \mathrm{KCl}$ will NOT dissolve

U9-23: If 15.0 g of magnesium chloride is dissolved in 125 mL of H 2 O , resulting mixture has a volume of 135 mL . What is concentration of soln?

- Answer: 1) g \rightarrow mol \quad 2) $\mathrm{M}=\mathrm{mol} / \mathrm{L}_{\text {soln }} \rightarrow 1.17 \mathrm{M} \mathrm{MgCl}_{2}$

U9-24: Write the equilibrium constant expression (K) for: \qquad $\mathrm{NO}(\mathrm{g})<->$ \qquad P4O6(s) + __N2(g)

- Answer: 1,6,1,3 $\rightarrow \mathrm{K}=[\mathrm{N} 2]^{3} /[\mathrm{NO}]^{6}$

U9-25: Write the equilibrium constant expression (K) for: __NH4Cl(s) <-> __NH3(g) + __HCl(g)

- Answer: $1,1,1 \rightarrow \mathrm{~K}=\left[\mathrm{NH}_{3}\right][\mathrm{HCl}]$

U9-26: Write the equilibrium constant expression (K) for: __CaO(s) + __CO2(g) <-> __CaCO3(s)

- Answer: 1,1,1 $\rightarrow \mathrm{K}=1 /\left[\mathrm{CO}_{2}\right]$

U9-27: $2 \mathrm{SO} 2(\mathrm{~g})+\mathrm{O} 2(\mathrm{~g})<->2 \mathrm{SO} 3(\mathrm{~g})+$ Heat : Left/Right/No Effect?
A) O 2 removed
B) SO 3 added
C) Temp decreased
D) Volume increased

- Answer: A) Left B) Left
C) Right
D) Left

U9-28: $\mathrm{CO}(\mathrm{g})+\mathrm{H} 2 \mathrm{O}(\mathrm{g})<->\mathrm{CO} 2(\mathrm{~g})+\mathrm{H} 2(\mathrm{~g})+$ Heat; Left/Right/No Effect?
A) H 2 O added
B) H 2 removed
C) Temp increased
D) Pressure decreases

- Answer: A) Right
B) Right
C) Left
D) No Effect

U9-29: How many moles of $\mathrm{Ba}(\mathrm{OH}) 2$ are contained in a solution of 125 mL of $0.0500 \mathrm{M} \mathrm{Ba}(\mathrm{OH}) 2$?

- Answer: mol ${ }_{\text {solute }}=(M)\left(L_{\text {soln }}\right) \rightarrow 0.00625 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}$

U9-30: What volume of 2.55 M NaOH is needed to make 125 mL of 0.0750 M NaOH solution?

- Answer: $\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2} \rightarrow \mathrm{~V}_{1}=3.68 \mathrm{~mL}(0.00368 \mathrm{~L}) \mathrm{NaOH}$ soln

U9-31: Calculate the concentration of a saturated solution of KNO3 at 40.0 C . (Assume in 100 g H2O soln)

- Answer: Saturated grams of $\mathrm{KNO}_{3} \rightarrow \mathrm{~mol} ; 100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}=100 \mathrm{~mL} \mathrm{H} \mathrm{H}$; $\mathrm{M}=\mathrm{mol} / \mathrm{L}_{\text {soln }} \rightarrow$ $5.93 \mathrm{M} \mathrm{KNO}_{3}$

U9-32: If 35.0 g KClO 3 is stirred in 50.0 g H 2 O at 50.0 C , what mass of KClO 3 is expected to settle to bottom?

- Answer: At $50^{\circ} \mathrm{C} \rightarrow 20 \mathrm{~g} \mathrm{KClO}_{3} / 100 \mathrm{~g} \mathrm{H} \mathrm{H}=10 \mathrm{~g} \mathrm{KClO}_{3} / 50 \mathrm{~g} \mathrm{H} \mathrm{H}_{2} \mathrm{O} \rightarrow 35.0 \mathrm{~g}-10.0 \mathrm{~g}=25.0 \mathrm{~g}$ KClO_{3} will NOT dissolve and settle to the bottom

U9-33: If pressure is increased in $1 \mathrm{~N} 2(\mathrm{~g})+3 \mathrm{H} 2(\mathrm{~g})<-->2 N H 3(\mathrm{~g})$, in which direction will EQ shift? Why?

- Answer: EQ will shift RIGHT towards products to re-establish EQ ; Why? Products have LESS moles of gas

U9-34: If volume is increased/decreased in a reaction, which TWO gas laws can be used to determine direction of EQ shift?

- Answer: Boyle's Law \rightarrow Increase Vol=Decrease Pressure (vice versa)
- Charles' Law \rightarrow Increase Vol=Increase Temp (vice versa)

U9-35: In order for EQ to shift right towards products in a closed system, this can only be done at the expense of the \qquad .

- Answer: Reactant(s)

U9-36: Provide the procedures necessary describing how you would prepare (create) a 150 mL , 0.250 M NaCl solution.

- Answer:
- 1. $\mathrm{M}_{\mathrm{NaCl}} \rightarrow$ mol $_{\mathrm{NaCl}} \rightarrow \mathrm{g} \mathrm{NaCl}$; Mass out 2.19 g NaCl onto a scale.
- 2. Dissolve fully in a 150 mL volumetric flask.
- 3. Fill up with water to 150 mL graduated line in volumetric flask.

