Unit 8A - Manometers \& Gas Laws Twitter Review Questions

U8A-1: Ar gas exerts pressure on Hg rising 465 mmHg on atmospheric arm. Find pressure of Ar gas (kPa) if atmospheric pressure is 1.42 atm.

- Answer: $\mathrm{P}_{\text {gas }}=206 \mathrm{kPa}$ Ar

U8A-2: Hg rises 155 mm higher on gas arm. Calculate the atmospheric pressure (mmHg) if gas pressure exerted is 87.1 kPa .

- Answer: Patm $=808 \mathrm{mmHg}$

U8A-3: Calculate the height (mmHg) that Hg rises on gas arm if gas pressure exerted is 0.780 atm and atmospheric pressure is 112.8 kPa .

- Answer: $\mathrm{h}=253 \mathrm{mmHg}$

U8A-4: What is the pressure (kPa) of nitrogen gas if its pressure exerted causes Hg to rise 145 mm.

- Answer: $\mathrm{P}_{\text {gas }}=" \mathrm{h"} \rightarrow \mathrm{P}_{\text {gas }}=19.3 \mathrm{kPa}$

U8A-5: What is the atmospheric pressure (atm) if gas exerted is 135.5 kPa and Hg rises 208 mm on atmospheric arm?

- Answer: Patm $=1.06$ atm

U8A-6: A gas takes up 17.0L, pressure of 2.30atm, and temp. of 299K. If temp. rises to $350 . \mathrm{K}$ \& pressure lowered to 1.50atm, find new volume.

- Answer: Gay-Lussac's $\rightarrow \mathrm{V}_{2}=30.5 \mathrm{~L}$

U8A-7: What volume change occurs to a 400.0 mL gas sample as the temperature increases from $22.0^{\circ} \mathrm{C}$ to $30.0^{\circ} \mathrm{C}$?

- Answer: Charles' $\rightarrow \mathrm{V}_{2}=411 \mathrm{~mL} / 11.0 \mathrm{~mL}$ volume change

U8A-8: If I have a 50.0 L container that holds 45.0 moles of gas at a temperature of $200 .{ }^{\circ} \mathrm{C}$, what is the pressure (atm) inside the container?

- Answer: Ideal Gas $\rightarrow P=34.9$ atm

U8A-9: A He balloon contains 7.20L. Pressure is reduced to 2.00atm \& balloon expands to 25.1 L . What was initial pressure exerted on balloon?

- Answer: Boyle's $\rightarrow P_{1}=6.97$ atm

U8A-10: Pressure of $\mathrm{N} 2, \mathrm{CO} 2, \& \mathrm{O} 2$ is 150 . kPa . What is pressure of O 2 if pressures of N 2 and CO 2 are 100 . kPa and 24.0 kPa , respectively?

- Answer: Partial Pressure \rightarrow Poz $=26.0 \mathrm{kPa}$

U8A-11: If a gas at $740 . \mathrm{mmHg}$ and $70.0^{\circ} \mathrm{C}$ has its pressure lowered to $720 . \mathrm{mmHg}$, what will its temperature be if volume remains constant?

- Answer: Gay-Lussac's $\rightarrow \mathrm{T}_{2}=334 \mathrm{~K}$

U8A-12: A sample of neon occupies a volume of 461 mL at STP. What will be the volume of the neon when the pressure is reduced to 93.3 kPa ?

- Answer: Boyle's $\rightarrow \mathrm{V}_{2}=501 \mathrm{~mL} \mathrm{Ne}$

U8A-13: On a $27.0^{\circ} \mathrm{C}$ day, a cylinder contains 20.0 L of air. At night it only holds 19.0 L . What is the temperature $\left({ }^{\circ} \mathrm{C}\right)$ at night?

- Answer: Charles' $\rightarrow \mathrm{T}_{2}=12.0^{\circ} \mathrm{C}$

U8A-14: A compressed gas at STP is heated to $40.0^{\circ} \mathrm{C}$. Find its final pressure in kPa if the volume remains constant.

- Answer: Gay-Lussac's $\rightarrow P_{2}=116 \mathrm{kPa}$

U8A-15: If I have 2.9 L of gas at $5.0 \mathrm{~atm} \& 50 .^{\circ} \mathrm{C}$, what will be temp of gas if volume is decreased to 2.4 L and pressure decreased to 3.0atm?

- Answer: Combined Gas $\rightarrow \mathrm{T}_{2}=160 \mathrm{~K}$

U8A-16: How many moles of gas are in a 30.0 L scuba canister if the temperature of the canister is $300 . \mathrm{K}$ and a pressure of 200. atm?

- Answer: Ideal Gas $\rightarrow \mathrm{n}=244$ moles

U8A-17: Find total pressure (atm) of mixture containing six gases with pressures of 3.25 kPa , $4.45 \mathrm{kPa}, 1.34 \mathrm{kPa}, 6.42 \mathrm{kPa}, 4.58 \mathrm{kPa}, \& 3.54 \mathrm{kPa}$.

- Answer: Partial Pressure $\rightarrow P_{\text {Total }}=0.233$ atm

U8A-18: A 500. mL glass with air is inverted in H 2 O at $7.00^{\circ} \mathrm{C} . \mathrm{H} 2 \mathrm{O}$ is heated to $77.0^{\circ} \mathrm{C}$. What volume of air leaks out from glass?

- Answer: Charles' $\rightarrow \mathrm{V}_{2}=625 \mathrm{~mL}$

U8A-19: A container holds 500. mL of CO 2 at $20.0^{\circ} \mathrm{C} \& 742$ Torr. What will be the volume of the CO 2 if pressure is increased to 795 Torr?

- Answer: Boyle's $\rightarrow \mathrm{V}_{2}=467 \mathrm{mLCO} 2$

U8A-20: A balloon can hold 100. L of air. If I blow it up with 3.00 moles of oxygen at 101.3 kPa , what is the temp. $\left({ }^{\circ} \mathrm{C}\right)$ of the balloon?

- Answer: Ideal Gas $\rightarrow \mathrm{T}=133^{\circ} \mathrm{C}$

