Unit 6 - Moles \& Chem Quantities Twitter Review Questions

U6-1: Associate the following substances to its appropriate unit (particles) used:
A) Element
B) Molecular Compound
C) Ionic Compound

- Answer: A) Atom
B) Molecule
C) Formula Unit

U6-2: A(n) \qquad formula represents the lowest/simplest ratio of atoms.

- Answer: Empirical

U6-3: A(n) \qquad formula represents the total ratio of atoms.

- Answer: Molecular

U6-4: How many oxygen atoms are present in one formula unit of barium phosphate?

- Answer: 8 oxygen atoms

U6-5: How many phosphorus atoms are in one molecule of diphosphorus pentoxide?

- Answer: 2 phosphorus atoms

U6-6: How many sulfate ions are in one formula unit of aluminum sulfate?

- Answer: 3 sulfate ions

U6-7: Calculate the molar mass of calcium, Ca. (Include correct unit)

- Answer: $\mathrm{Ca}=40.08 \mathrm{~g} / \mathrm{mol}$

U6-8: Calculate the molar mass of iron (III) chloride. (Include correct unit)

- Answer: $\mathrm{FeCl}_{3}=162.2 \mathrm{~g} / \mathrm{mol}$

U6-9: Calculate the molar mass of xenon pentachloride, XeCl . (Include correct unit)

- Answer: $\mathrm{XeCl}_{5}=308.54 \mathrm{~g} / \mathrm{mol}$

U6-10: Which of the following is an example of a formula unit?
A) NaCl
B) CH 4
C) C 6 H 12 O 6
D) SO 2

- Ancwer: A) NaCl

U6-11: Which of the following is an example of a molecule?
A) $\mathrm{Ba}\left(\mathrm{NO}_{3}\right) 2$
B) Fe 2 S 3
C) BF 3
D) Al 2 O 3

- Answer: C) BF_{3}

U6-12: Conversion of grams BaS to $\mathrm{S}^{\wedge} 2$ - ions:
A) mass \rightarrow molec \rightarrow ion
B) mass \rightarrow mole \rightarrow ion
C) mass \rightarrow mole \rightarrow molec \rightarrow ion
D) mass \rightarrow mole \rightarrow f.u. \rightarrow ion

- Answer: D) mass \rightarrow mole \rightarrow f.u. \rightarrow ion

U6-13: Determine the empirical formula of C 4 H 10 .

- Answer: E.F. $=\mathrm{C}_{2} \mathrm{H}_{5}$

U6-14: Calculate the percent composition of water in the hydrate, copper (II) sulfate pentahydrate.

- Answer: $\left[\left(90.08 \mathrm{~g} / \mathrm{mol}_{\left.5 \mathrm{H}_{2} \mathrm{O}\right)}\right) /\left(249.7 \mathrm{~g} / \mathrm{mol} \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}\right)\right]=36.1 \% \mathrm{H}_{2} \mathrm{O}$

U6-15: What is the correct formula for the hydrate, calcium chloride dihydrate?

- Answer: $\mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$

U6-16: How many moles of sulfur trioxide are in $4.56 \times 10^{\wedge} 24$ molecules? (Include value, unit, substance formula in answer).

- Answer: $7.57 \mathrm{~mol} \mathrm{SO}_{3}$

U6-17: How many formula units of calcium sulfate are in 2.90 moles? (Include value, unit, substance formula in answer).

- Answer: 1.75×10^{24} f.u. CaSO_{4}

U6-18: How many molecules of carbon dioxide are in 2.40 moles? (Include value, unit, substance formula in answer).

- Answer: 1.44×10^{24} molecules CO_{2}

U6-19: How many grams of methane gas, CH 4 , are in 13.4 moles? (Include value, unit, substance formula in answer).

- Answer: $215 \mathrm{~g} \mathrm{CH}_{4}$

U6-20: How many moles of aluminum iodide are present in 275 grams? (Include value, unit, substance formula in answer).

- Answer: $0.675 \mathrm{~mol} \mathrm{AlI}_{3}$

U6-21: How many grams of rubidium chloride are in $8.66 \times 10^{\wedge} 26$ formula units? (Include value, unit, substance formula in answer).

- Answer: $1.74 \times 10^{5} \mathrm{~g} \mathrm{RbCl}$

U6-22: How many grams of butane, C 4 H 10 , are in $25.3 \times 10^{\wedge} 28$ molecules? (Include value, unit, substance formula in answer).

- Answer: $2.44 \times 10^{7} \mathrm{~g} \mathrm{C}_{4} \mathrm{H}_{10}$

U6-23: How many molecules of pentane, C5H12, are in 0.211 grams? (Include value, unit, substance formula in answer).

- Answer: 1.76×10^{21} molecules $\mathrm{C}_{5} \mathrm{H}_{12}$

U6-24: How many formula units of strontium carbonate are in $6.30 \times 10^{\wedge} 6$ grams? (Include value, unit, substance formula in answer).

- Answer: 2.57×10^{28} f.u. SrCO_{3}

U6-25: How many atoms of aluminum are in 5.25 grams of aluminum sulfate Al2(SO4)3 ? (Include value, unit, substance formula in answer).

- Answer: 1.85×10^{22} atoms Al

U6-26: How many total atoms are in 4.45 moles of methane, CH 4 ? (Include value, unit, substance formula in answer).

- Answer: 1.34×10^{25} atoms CH_{4}

U6-27: Determine the percent composition of EACH element in calcium chloride, CaCl .

- Answer: $\mathrm{Ca}=36.1 \%$
$\mathrm{Cl}=63.9 \%$

U6-28: Determine the percent composition of nitrogen in magnesium nitrate.

- Answer: N = 18.9\%

U6-29: Determine the empirical formula of a compound that contains $32.4 \% \mathrm{Na}, 22.6 \%$ S , and $45.0 \% \mathrm{O}$.

- Answer: E.F. $=\mathrm{Na}_{2} \mathrm{SO}_{4}$

U6-30: Determine the empirical formula of a compound that contains 58.8 g carbon, 9.80 g hydrogen, and 31.4 g oxygen.

- Answer: E.F. $=\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}$

U6-31: A 15.7 g sample of a hydrate, magnesium carbonate, was heated. The mass after heating was 7.58 g . What is the formula of the hydrate?

- Answer: $\mathrm{MgCO}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$

U6-32:
A) What is the formula of a hydrate that is 90.7% strontium oxalate ($\mathrm{SrC2O}$) and 9.30% water?
B) What is the full name of this hydrate?

- Answer: A) $\mathrm{SrC}_{2} \mathrm{O}_{4} \cdot 1 \mathrm{H}_{2} \mathrm{O}$
B) Strontium Oxalate Monohydrate

U6-33: Determine the molecular formula of a compound whose empirical formula is C 3 H 7 and a molecular mass of $86.0 \mathrm{~g} / \mathrm{mol}$.

- Answer: M.F. = $\mathrm{C}_{6} \mathrm{H}_{14}$

U6-34: Determine the molecular formula of a compound whose empirical formula is P2O5 and a molecular mass of $284 \mathrm{~g} / \mathrm{mol}$.

- Answer: M.F. $=\mathrm{P}_{4} \mathrm{O}_{10}$

U6-35: Determine the molecular formula of a compound that contains $56.4 \% \mathrm{P}$ and 43.7% O and a molecular mass of $220 . \mathrm{g} / \mathrm{mol}$.

- Answer: E.F. $=\mathrm{P}_{2} \mathrm{O}_{3} \quad \& \quad$ M.F. $=\mathrm{P}_{4} \mathrm{O}_{6}$

