U1 - Intro \& Measurements TWITTER Review

U1-1: A piece of wood that measures 3.00 cm by 6.00 cm by 4.00 cm has a mass of 85.5 grams. A) What is its density? B) Will it float in water?

- Answer: A) $D=1.19 \mathrm{~g} / \mathrm{cm}^{3} \quad$ B) NO, will not float (more dense than water)

U1-2: I threw a ball into a pool for my dog to fetch. The ball has a mass of 125 g . What must its volume be to have a density of $0.500 \mathrm{~g} / \mathrm{mL}$?

- Answer: $V=250 . \mathrm{mL}$ OR $2.50 \times 10^{2} \mathrm{~mL}$

U1-3: which lab instrument would be best to measure out 45.0 mL of milk and why?

- Answer: Graduated Cylinder - Contains most \# of graduations (markings)

U1-4: How many sig figs are in:
a) 4005.050 cm
b) $25,600 \mathrm{~min}$
c) 0.015 m

- Answer: A) 7sf
B) 3 sf
C) 2 sf

U1-5: A laboratory measurement of the specific heat of aluminum was $0.156 \mathrm{cal} / \mathrm{gC}$. What is the \% error if its accepted value is $0.185 \mathrm{cal} / \mathrm{gC}$?

- Answer: \% Error = 15.7\%

U1-6: Convert the following measurements into scientific notation:
a) $15,090 \mathrm{~mL}$
b) 0.00505 GB
c) 0.0025 mol

- Answer: A) $1.509 \times 10^{4} \mathrm{~mL}$
B) $5.05 \times 10^{-3} \mathrm{~GB}$
C) $2.5 \times 10^{-3} \mathrm{~mol}$

U1-7: Convert the following measurements into standard (expanded) form:
a) $6.02 \times 10^{\wedge} 3 \mathrm{~mL}$
b) $3.25 \times 10^{\wedge} 2 \mathrm{~km}$
c) $1.50 \times 10^{\wedge}-2 \mathrm{~mol}$

- Answer: A) $6020 \mathrm{~mL} \quad$ B) $325 \mathrm{~km} \quad$ C) 0.0150 mol

U1-8: Why is it important to include a final, estimated significant digit onto a measurement?

- Answer: The more sig figs a measurements contains, the more precise its measurement is

U1-9: Which of the following conversion factors is INCORRECT:
a) $1 \mathrm{~mL}=1 \mathrm{~cm}^{\wedge} 3$
b) $1 \mathrm{~s}=100 \mathrm{~ms}$
c) $1 \mathrm{~GB}=1000 \mathrm{MB}$
d) $10 \mathrm{dkL}=1000 \mathrm{dL}$

- Answer: B - 1 sec is NOT EQUAL to 100 ms ; Fact: $1 \mathrm{~s}=1000 \mathrm{~ms}$

U1-10: What is the SI unit for volume?

- Answer: SI Unit = L

U1-11: Why is length considered a fundamental unit?

- Answer: Length is a one dimensional measurement that only contains ONE unit of measurement

U1-12: Three students mass out a known 5.00 kg cinder block. $2.50 \mathrm{~kg}, 7.75 \mathrm{~kg}$, \& 10.3 kg were obtained. Describe accuracy \& precision of mments.

- Answer: Poor accuracy ; Poor precision

U1-13: What is the identity of an object with a mass 525 g and volume of $66.8 \mathrm{~cm} \wedge 3$?

- Answer: D = $7.86 \mathrm{~g} / \mathrm{cm}^{3}$; Iron

U1-14: When recording the liquid volume of a substance, where should you correctly read on the instrument?

- Answer: Bottom of meniscus

U1-15: How many microseconds are in 5.45 seconds?

- Answer: 5.45×10^{6} microseconds

U1-16: CHALLENGE: A plane is loaded with 173,231 liters of fuel. If fuel density is $0.768 \mathrm{~g} / \mathrm{mL}$, what is the mass of fuel in kilograms?

- Answer: Mass = 133,041 kg

U1-17: CHALLENGE: A race car is traveling at 85.0 meters/second (m / s). How fast is the car traveling in miles/hour (mph) if $1600 \mathrm{~m}=1 \mathrm{mile}$?

- Answer: $85.0 \mathrm{~m} / \mathrm{s}=191 \mathrm{mile} / \mathrm{hr}$

U1-18: If two round objects were the exact same size (diameter), how is it possible to increase the density of one of the two objects?

- Answer: Increase its mass only since diameters (therefore volume) are equal

U1-19: Identify if the following are fundamental or derived units:
a) kilometers
b) mph
c) $\mathrm{cm} \wedge 3$
d) Kelvin

- Answer: a) fundamental
b) derived
c) derived
d) fundamental

U1-20: An acid measured in a graduated cylinder reads 50.2 mL . Which digit is regarded as the estimated digit?

- Answer: 2 - Estimated digit in a measurement is its LAST value

U1-21: Vol of 225 g sample of iron is $43.0 \mathrm{~cm}^{\wedge} 3$. What level will water's level rise to if you place a bar into a beaker with 35.0 mL of water?

- Answer: [(vol of bar) + (vol of water) $] \rightarrow\left[\left(43.0 \mathrm{~cm}^{3}\right)+(35.0 \mathrm{~mL})\right]=78.0 \mathrm{~mL}$ \rightarrow Conversion Factor: $1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$

U1-22: NEED TO KNOW: Be able to correctly identify AND name common lab instruments.

- Answer: Graduated cylinder ; Erlenmeyer flask, volumetric flask, beaker, volumetric pipette

U1-23: NEED TO KNOW: Be able to reproduce the ENTIRE metric line in the correct order.

- Answer: G__ _ M _ _ k h dk BASE d c m _ _ $\mu \ldots \ldots n \ldots \ldots$

U1-24: Perform the following conversions (include units):
a) $345 \mathrm{~mL}=$ __? __ L
b) $50.5 \mathrm{~kg}=\ldots ? \ldots \mathrm{dg}$
c) $15.5 \mathrm{~L}=$ _ ? __ $\mathrm{mol}(1 \mathrm{~mol}=22.4 \mathrm{~L})$

- Answer: a) 0.345 L
b) $5.05 \times 10^{5} \mathrm{dg}$
c) 0.692 mol

U1-25: Round these numbers to the indicated number of sig figs:
a) $2430 \rightarrow 2 \mathrm{sf}$
b) $1986 \rightarrow 3 \mathrm{sf}$
c) $2018 \rightarrow 5 \mathrm{sf}$
d) $0.00359 \rightarrow 2 \mathrm{~s}$

- Answer: a) 2.4×10^{3}
b) 1.99×10^{3}
c) 2018.0
d) 3.6×10^{-3}

U1-26: Mr. Arul feeds his dog about 4 cups of dog food per day. If each cup has a mass of 105 grams, how many kg of food will his dog consume in one year?

U1-27: Three people weigh a standard mass of 2.00 g on same balance. Each person records 7.32 g for the standard. These results imply that the balance that was used is:

- Answer: precise, but not accurate

U1-28: Water level in a graduated cylinder is 25.0 mL . When a solid is placed inside the cylinder, new volume is 31.0 mL . What is its density, if solid has a mass of 27.9 g ?

- Answer: D $=4.65 \mathrm{~g} / \mathrm{mL}$

U1-29: Refer to \#28 - The accepted value of this solid is $4.50 \mathrm{~g} / \mathrm{mL}$. Calculate the percent error.

- Answer: \% Error = 3.33\%

U1-30: Refer to \#28 - What is the identity of this solid?

- Answer: Titanium (Ti)

