Unit 10 - Acids \& Bases Twitter Review Questions

U10-1: What is true about the equivalence point of a titration? (Be very specific)

- Answer: moles $\mathrm{H}+$ (acid) $=$ moles OH - (base)

U10-2: Determine if TRUE or FALSE about hydrobromic acid (HBr):
A) Strong Acid?
B) Weak Acid?
C) Arrhenius Acid?
D) Bronsted-Lowry Acid?

- Answer: A) True B) False C) True D) True
* If Arrhenius Acid, then automatically Bronsted-Lowry Acid

U10-3: Which of the following is a weak acid? $\mathrm{HBr} / \mathrm{HI} / \mathrm{HNO}$ / HClO 3

- Answer: HNO_{2}

U10-4: Which of the following is NOT a strong base? $\mathrm{NaOH} / \mathrm{Al}(\mathrm{OH}) 3 / \mathrm{RbOH} / \mathrm{Ba}(\mathrm{OH}) 2$

- Answer: $\mathrm{Al}(\mathrm{OH})_{3}$

U10-5: Identify three (3) properties of an acid.
A)
B)
C)

- Answer: A) Sour taste \quad B) Electrolyte \quad C) Contain hydrogen cation
$\begin{array}{lll}\text { D) Produces } \mathrm{H}+\text { in solution } & \text { E) } \mathrm{pH}<7 & \text { F) Neutralized with base }\end{array}$
U10-6: Water is an amphoteric substance. What does this mean? (Be very specific)
- Answer: Water can both donate and accept protons (H+)

U10-7: What is true about the pH value of a substance that indicates the highest (strongest) level of acidity?

- Answer: pH value closest to zero (0)

U10-8: Arrhenius acids are also classified as a B-L acid. However, what characteristic of a B-L acid does NOT classify it as Arrhenius acid?

- Answer: Proton (H+) donor

U10-9: Predict the products of the following acid-base neutralization reaction (no need to balance): $\mathrm{HF}+\mathrm{Ca}(\mathrm{OH}) 2 \rightarrow$

- Answer: $\mathrm{HF}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{CaF}_{2}+\mathrm{H}_{2} \mathrm{O}$

U10-10: What STRENGTH of bases is completely ionized in solution?

- Answer: Completely ionized $=100 \%$ dissociation \rightarrow Strong Bases

U10-11: Litmus/pH paper is dipped into a solution. The Litmus/pH paper turns blue. What is the identity of this solution, acid or base?

- Answer: Blue = BASE

U10-12: What is one unique property of a strong acid over a weak acid.

- Answer: Strong acids dissociate/ionize completely (100\%) in solution

U10-13:
A) Is ammonia (NH3) an acid or a base?
B) Explain why.

- Answer: A) Base B) Produces OH^{-}in solution

U10-14: A strong acid is titrated with weak base. Would you expect the resulting solution equivalence point be at $\mathrm{pH}=7$, above 7 , or below 7 ?

- Answer: Below pH 7

U10-15: Match an acid and base to its conjugates.

- Answer: $A \rightarrow C B ; B \rightarrow C A$

U10-16: In order to determine if a substance/solution is acidic, basic, or neutral, what must you calculate for?

- Answer: pH

U10-17: A) Phenolphthalein in an acid is what color? B) In a base?

- Answer: A) Colorless
B) Pink

U10-18: Blue Litmus paper dipped into an acidic solution will turn what color?

- Answer: Red

U10-19: The equivalence point of a titration is also referred to as the point of \qquad .

- Answer: Neutralization

U10-20: Provide the nomenclature of the following:
A) H 3 PO 3
B) HNO 4
C) H 2 S
D) HClO 3

- Answer: A) Phosphorous Acid

D) Chloric Acid	B) Pernitric Acid	C) Hydrosulfuric Acid

U10-21: Provide the nomenclature of the following:
A) Hydrobromic Acid
B) Sulfurous Acid
C) Perchloric Acid
D) Nitric Acid

- Answer: A) HBr
B) $\mathrm{H}_{2} \mathrm{SO}_{3}$
C) HClO_{4}
D) HNO_{3}

U10-22: Identify (A, B) in reactants and their matching conjugates ($C B, C A$) for the following: (1) $\mathrm{HC} 2 \mathrm{H} 3 \mathrm{O} 2+(2) \mathrm{OH}-\rightarrow$ (3) $\mathrm{H} 2 \mathrm{O}+(4) \mathrm{C} 2 \mathrm{H} 3 \mathrm{O} 2-$

- Answer: (1) A
(2) B
(3) CA
(4) CB

U10-23: Identify (A, B) in reactants and their matching conjugates (CB,CA) for the following: (1) NH3 + (2) H2O \rightarrow (3) NH4+ + (4) OH-

- Answer: (1) B
(2) A
(3) CA
(4) CB

U10-24: What is the pH of a 0.0500 M NaOH solution?

- Answer: pH = 12.7

U10-25:
A) The pOH of a solution is 10.5 . What is the [$\mathrm{OH}-]$ of the solution?
B) Is solution acidic, basic, or neutral?

- Answer: A) $\left[\mathrm{OH}^{-}\right]=3.16 \times 10^{-11} \mathrm{M}$
B) $\mathrm{pH}=3.5 \rightarrow$ Acidic

U10-26: A crushed tomato, an acidic fruit, is found to have a concentration of $6.2 \times 10^{\wedge}$ -5 M . What is the pH of the tomato?

- Answer: $\mathrm{pH}=4.2$

U10-27:
A) What is the $[\mathrm{H}+]$ of canned peaches if its $[\mathrm{OH}-]$ is $3.16 \times 10^{\wedge}-11 \mathrm{M}$?
B) Are peaches acidic, basic, or neutral?

- Answer: A) $\left[\mathrm{H}^{+}\right]=3.16 \times 10^{-4} \mathrm{M} \quad$ B) Acidic

U10-28: What is the pOH of sour dill pickles if its $[\mathrm{OH}-]=1.6 \times 10^{\wedge}-10 \mathrm{M}$?

- Answer: A) $\mathrm{pOH}=9.8$

U10-29: 50.mL HBr soln is added to flask with phenolphthalein. When $30 . \mathrm{mL}$ of 0.50 M NaOH is added, soln is neutralized. Write a balanced eqn.

- Answer: A) $1 \mathrm{HBr}+1 \mathrm{NaOH} \rightarrow 1 \mathrm{NaBr}+1 \mathrm{H}_{2} \mathrm{O}$

U10-30: Refer to conditions in \#29 - How many moles of NaOH were added?

- Answer: $\mathrm{mol}_{\mathrm{B}}=\left(\mathrm{M}_{\mathrm{B}}\right)\left(\mathrm{L}_{\mathrm{B}}\right) \rightarrow \mathrm{mol}_{\mathrm{B}}=0.015 \mathrm{~mol} \mathrm{NaOH}$

U10-31: Refer to conditions in \#29-How many moles of HBr were present originally?

- Answer: At EQ Point : $\mathrm{mol}_{\mathrm{A}}=\mathrm{mol}_{\mathrm{B}} \rightarrow \mathrm{mol}_{\mathrm{A}}=0.015 \mathrm{~mol} \mathrm{HBr}$

U10-32: Refer to conditions in \#29-What was the concentration of original HBr solution?

- Answer: $\mathrm{M}_{\mathrm{A}}=0.30 \mathrm{M} \mathrm{HBr}$

U10-33: Refer to conditions in \#29-Was the pH at the equivalence point above, below, or equal to 7 ?

- Answer: SA + SB $=$ Neutral \rightarrow At pH 7

U10-34: Explain how you would determine the pH of the Equivalence Point (EQ Point) on a titration curve.

- Answer: The EQ Point on a titration curve is determined by finding the "midpoint" of the titration curve and reading over to the left of the " y-axis" to determine its proper pH value

U10-35: Explain how you would determine the volume (mL) of the titrant (vol of known conc) at EQ Point on a titration curve.

- Answer: The EQ Point on a titration curve is determined by finding the "midpoint" of the titration curve and reading down to the "x-axis" to determine its proper volume (mL)

