Study Guide - Honors Chemistry
 Solubility, Concentration, Equilibrium

Chm.3.1.1 Explain the factors that affect the rate of a reaction (temperature, concentration, particle size and presence of a catalyst).

- Understand qualitatively that reaction rate is proportional to number of effective collisions. (Question 4)
- Explain that nature of reactants can refer to their complexity and the number of bonds that must be broken and reformed in the course of reaction.
- Explain how temperature (kinetic energy), concentration, and/or pressure affects the number of collisions. (Question 5)
- Explain how increased surface area increases number of collisions.
- Explain how a catalyst lowers the activation energy, so that at a given temperature, more molecules will have energy equal to or greater than the activation energy.

Chm.3.1.2 Explain the conditions of a system at equilibrium.

- Define chemical equilibrium for reversible reactions.
- Distinguish between equal rates and equal concentrations.
- Explain equilibrium expressions for a given reaction. (Questions 12,13)
- Evaluate equilibrium constants as a measure of the extent that the reaction proceeds to completion. (Question 14)

Chm.3.1.3 Infer the shift in equilibrium when a stress is applied to a chemical system (Le Chatelier's Principle).

- Determine the effects of stresses on systems at equilibrium. (Adding/ removing a reactant or product; adding/removing heat; increasing/decreasing pressure) (Questions 12,13)
- Relate the shift that occurs in terms of the order/disorder of the system. (Questions 12,13)

Chm.3.2.3 Infer the quantitative nature of a solution (molarity, dilution, and titration with a 1:1 molar ratio).

- Compute concentration (molarity) of solutions in moles per liter. (Question 7,8)
- Calculate molarity given mass of solute and volume of solution. (Question 7)
- Calculate mass of solute needed to create a solution of a given molarity and volume. (Questions 9,11)
- Solve dilution problems: $\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$. (Question 10)
- Perform 1:1 titration calculations: $\mathrm{M}_{\mathrm{A}} \mathrm{V}_{\mathrm{A}}=\mathrm{M}_{\mathrm{B}} \mathrm{V}_{\mathrm{B}}$
- Determine concentration of an acid or base using titration. Interpret titration curve for strong acid/strong base.

Chm.3.2.4 Summarize the properties of solutions.

- Identify types of solutions (solid, liquid, gaseous, aqueous). (Question 1)
- Define solutions as homogeneous mixtures in a single phase.
- Distinguish between electrolytic and nonelectrolytic solutions.
- Summarize colligative properties (vapor pressure reduction, boiling point elevation, freezing point depression, and osmotic pressure). Note: Conceptual understanding only-no calculations.

Chm.3.2.5 Interpret solubility diagrams.

- Use graph of solubility vs. temperature to identify a substance based on solubility at a particular temperature. (Questions 2,3,6)
- Use graph to relate the degree of saturation of solutions to temperature. (Questions 2,3,6)

Chm.3.2.6 Explain the solution process.

- Develop a conceptual model for the solution process with a cause and effect relationship involving forces of attraction between solute and solvent particles. A material is insoluble due to a lack of attraction between particles.
- Describe the energetics of the solution process as it occurs and the overall process as exothermic or endothermic.
- Explain solubility in terms of the nature of solute-solvent attraction, temperature and pressure (for gases). (Question 5)

Study Guide - Honors Chemistry
 Solubility, Concentration, Equilibrium

Practice Problems:

Solubility:

1) CIRCLE each substance below that should be soluble in water based on "Like Dissolves Like" and the Solubility Rules.
** MAKE SURE YOU KNOW WHY!! **
a) BaCO_{3}
b) NaNO_{3}
c) AgCl
d) CuSO_{4}
e) $\mathrm{LiC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
f) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$
g) $\mathrm{Fe}(\mathrm{OH})_{3}$
h) PbI_{2}
i) NH_{3}
j) CH_{4}
k) Br_{2}
l) SCl_{2}
2) Use the solubility curve to the right. Is a solution of 22.0 g of NaCl in 40.0 g of water at $70^{\circ} \mathrm{C}$ saturated, unsaturated or supersaturated? Show your work!!

3) Using the solubility curve above, how much water is needed to dissolve 11.0 g of LiBr at $70^{\circ} \mathrm{C}$? Show your work!!
4) What are three (3) ways of speeding up the rate at which sugar dissolves in water?
5) A) How would you increase the amount of a solid solute that dissolves in a solution?
B) How would you increase the amount of a gas solute that dissolves in a solution?
6) Describe the procedure for making a supersaturated solution.

Study Guide - Honors Chemistry
 Solubility, Concentration, Equilibrium

Concentration (Molarity):

7) If you have 3.00 g of LiOH dissolved in enough water to make a 45.0 mL solution, what is the molarity?
8) What volume of $\mathrm{Na}_{2} \mathrm{~S}$ solution should you measure out if you want 0.0150 moles of $\mathrm{Na}_{2} \mathrm{~S}$ and the solution has a concentration of 2.50 M ?
9) What mass of solute is needed to prepare 50.0 mL of a 0.150 M solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$?
10) If 35.0 mL of 1.50 M solution is diluted to 100 mL , what is the concentration of the dilute solution?
11) If 25.0 mL of $0.330 \mathrm{M} \mathrm{CuCl}_{2}$ solution reacts with excess aluminum, what is the mass of copper that will form? (Hint: Write a balanced chemical equation)

Study Guide - Honors Chemistry
 Solubility, Concentration, Equilibrium

Equilibrium:

12) Use the equation below to answer the following questions:
$3 \mathrm{Fe}_{(\mathrm{s})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \leftarrow \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4(\mathrm{~s})}+4 \mathrm{H}_{2}(\mathrm{~g})+$ Energy
a) Predict the shift (left or right) if the amount of water is increased.
b) Predict the shift (left or right) if H_{2} is removed as it is formed. \qquad
c) Predict the shift (left or right) if temperature is increased. \qquad
d) Write the equilibrium constant expression:
13) Use the equation below to answer the following questions:

$$
2 \mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}+\text { Heat } \longleftrightarrow 2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{S}_{2(\mathrm{~g})}
$$

a) Predict the shift (left or right) if pressure is increased.
b) Predict the shift (left or right) if H_{2} is added. \qquad
c) Predict the shift (left or right) if temperature is increased. \qquad
d) Predict the shift (left or right) if volume is increased. \qquad
e) Predict the shift (left or right) if S_{2} is removed. \qquad
f) Write the equilibrium constant expression:
14) Which are favored, reactants or products?
a) $\mathrm{K}>1$
b) $\mathrm{K}<1$

