MOLAR MASS OF BUTANE LAB Academic Chemistry

NAME:	
DATE:	PD:

Objective: Dalton's law and the ideal gas law - Show how these gas laws can be used to determine the molar mass of butane.

Preparation:

- 1) Fill the sink with room temperature water.
- 2) Submerge the 100-mL graduated cylinder in water and fill it completely with water. There should be no air bubbles.
- 3) Submerge the disposable butane lighter in water, remove it, and then dry it off as thoroughly as possible.
- 4) Weigh the butane lighter to the nearest 0.01g and record the mass. This is your initial mass of the lighter.

Procedure:

- 5) Using a thermometer, measure and record temperature of the water bath. Record the barometric pressure off the board.
- 6) While holding the inverted graduated cylinder, place the lighter in the water underneath the opening and fill the graduated cylinder with butane by holding down the trigger.
- 7) At first, displace about 90 mL of water. Then, adjust the graduated cylinder so that the 100-mL mark lines up with the height of the water in the sink. Finish filling the graduated cylinder with butane until it reaches the 100-mL mark.
- Release the gas from the graduated cylinder. Dry off the butane lighter and weigh it again. Record the mass.

Data:

1) Water bath temperature°C	4) Initial mass of lighterg
2) Barometric pressure(P _{atm})mmHg	5) Final mass of lighterg
3) Volume of gas collectedmL	6) Mass of butane releasedg

Post-Lab calculations and questions:

- 7) What *two* gases are in the graduated cylinder after step #7 of the experiment?
- 8) What is the <u>vapor pressure</u> of water (P_{H2O}) at the water bath temperature?
- 9) Use Dalton's Law of partial pressures to determine the <u>partial pressure of butane</u> in the graduated cylinder: (P_{but} = P_{atm} P_{H2O})

10) Use the Ideal gas law to find the number of *moles* of butane released from the lighter.

11) Using data from your experiment, what is the *experimental* molar mass (g/mol) of butane?

Experimental Molar Mass = mass of butane released moles of butane released

12) The molecular formula of butane is C_4H_{10} . Using the periodic table, what is its <u>accepted</u> molar mass?

13) Determine the *percent error* using the accepted molar mass of butane.

I experimental molar mass - accepted molar mass I % Error = ------ x 100 accepted molar mass

Water Vapor Pressure at Various Temperatures				
Temp ([®] C)	Pressure	Temp ([®] C)	Pressure	
19	16.5 mmHg	25	23.8 mmHg	
20	17.5	26	25.2	
21	18.6	27	26.7	
22	19.8	28	28.3	
23	21.0	29	30.0	
24	22.4	30	31.8	