Lab: It's All About Density

Background:

Density is defined as the amount of matter that occupies a given unit of space: it can also be thought of as the "compactness" of a substance. Dense materials (such as lead or gold) are very heavy for their size whereas less dense substances (such as a big bag of feathers or a filled balloon) are light for their size.

Density is equal to a substance's mass per unit volume, where *mass* is the amount of matter in an abject *measured in grams) and *volume* is the amount of space that an object occupies (measured in milliliters or cubic centimeters). The equation to calculate density is as follows:

Density = $\underline{Mass}_{Volume}$ OR D = \underline{M}_{V} (in g/mL or g/cm³)

Density if an intrinsic physical property of matter – that is, it is a property unique to a specific substance (at a specified temperature) no matter what size the sample. A substance's density varies with temperature and pressure changes. The benchmark for comparing density is water which, at 4°C, has a density of 1.00 g/mL. Substances that float in water are less dense than water, while substances that sink are more dense that water.

<u>Table 1</u>:

Shape of Solid Object		Volume (in cm ³)
Cube or Rectangle		V = L x W x H
Cylinder		$V = \pi x r^2 x h$
Sphere		$V = 4/3 \times \pi \times r^3$

Table 2:

Densities of Common Substances						
Substance	Density (g/cm ³)	Substance	Density (g/cm ³)			
Helium	0.0002	Sulfur	2.07			
Air	0.001	Silicon	2.33			
Balsa Wood	0.11-0.14	Glass	2.4-2.8			
Cork	0.22-0.26	Aluminum	2.70			
Maple Wood	0.65-0.75	Calcium carbonate	2.93			
Ethanol	0.789	Rubber	1.34			
Mineral oil	0.86-0.93	Iron	7.86			
Polyethylene plastic	0.92	Copper	8.92			
Water	1.000	Lead	11.3			
Polystyrene plastic	1.06	Mercury	13.6			
Fool's Gold (FeS ₂)	5.0	Gold	19.3			

Procedures:

- 1. Determine the mass and volume of each of the following seven materials using the appropriate method as outlined in the background section.
 - Station 1 Clear Liquid I
 - Station 3 White block

Station 2 – Clear Liquid II

Station 6 – Glass sphere

- Station 4 Foam block
- Station 5 Rubber stopper
- Station 7 Metal cylinder
- 2. Record the mass and volume of each substance in the Density Data Table. Be sure to include the appropriate units.
- 3. Calculate the density of each material
- 4. Determine the identity of the unknown metal cylinder by comparison with the actual values for density.

Pre-lab Questions:

Type of Material	M or V Data	Mass (grams)	Volume (mL or cm ³)	Density (g/mL or g/cm ³)	Identity of Solid
Rectangular Solid	L = 1.23 cm W = 2.34 cm H = 3.45 cm	10.6 g			
Cylindrical Solid	h = 3.45 cm d = 1.12 cm	26.72 g			
Irregular Solid	Vol water = 25.2 mL Vol water + solid = 37.4 mL	61.1 g			
Liquid	Mass empty cylinder = 40.1 g Mass cylinder + liquid = 93.2 g		67.2 mL		

Lab Data:

Station	Name of Object	Mass (g)	Volume (mL of cm³)	Density (g/mL or g/cm ³)
1	Clear Liquid I	Cylinder + liquid = Cylinder = Liquid =		
2	Clear Liquid II	Cylinder + liquid = Cylinder = Liquid =		
3	White Block		V = L x W x H L = W = H = V =	
4	Foam Block		V = L x W x H L = W = H = V =	
5	Rubber Stopper		Water = Water + stopper = Glass =	
6	Glass Sphere (Water displacement method)		Water = Water + glass = Glass =	
	Glass Sphere (Measurement method)		$V = 4/3 \pi r^3$ d = r = V =	
7	Metal Cylinder (Water displacement method)		Water = Water + metal = Metal =	
	Metal Cylinder (Measurement method)		$V = \pi r^{2}h$ d = r = h = V =	

Post-Lab Questions:

- 1. Rank the materials tested in this lab in order from most dense to least dense.
- 2. If the foam block was cut in half, would the density change? Explain.
- 3. List the items in this lab that would float on water. How was this determined?
- 4. Consider the following six materials water, mercury, mineral oil, cork stopper, rubber stopper, and a piece of lead. If these materials were added to a graduated cylinder, in water order would they be found from top to bottom?
- 5. Why is density an important factor to know about a material?
- 6. Use the "Table of Densities of Common Substances" to identify Clear Liquids I & II.
- 7. Observe the metal cylinder tested at Lab Station 7. Using the density you obtained and observations, identify the metal.
- 8. From you answer to question 7, which method for determining density did you find to be more accurate? Explain.
- 9. Explain how you would find the density of your own body.