\qquad Date: \qquad

Unit 8 - States of Matter \& Gas Laws Simulation Lab

Directions

- Go to Phet.colorado.edu
- Search for the "States of Matter: Basics" simulation.
- Click on the "States of Matter" icon.
- Select "Oxygen."

1. The simulation shows a quantity of oxygen molecules. What state of matter is this? Draw a picture.
2. How do you know?
3. Heat the oxygen to about 67 K . What state of matter is this? Draw a picture.
4. How did you know?
5. Heat the oxygen to about 150 K . What state of matter is this? Draw a picture
6. How do you know?

To do these experiments - click on the "Phase Changes" icon. Select "Oxygen"

Experiment 1: Constant Volume.

- Leave the oxygen at 150 K . In the table below, record the pressure and temperature of the oxygen in the first row.
- Heat the oxygen to about 450 K.
- Record the new temperature and pressure in the second row of the table.
- Heat the oxygen to about 900 K.
- Record the new temperature and pressure in the third row of the table.

Temperature vs. pressure at constant volume	
Temperature (K)	Pressure (atm)

7. Write a statement describing how the temperature of a quantity of a gas is related to its pressure at constant volume. What is the formula that relates temperature and pressure?
8. Draw a graph illustrating this relationship, with temperature on the x-axis and pressure on the y-axis. Label the axes and give the graph a title. You do not have to scale the axes.

Experiment 2: Constant Temperature.

- Reset the simulation and choose oxygen.
- Heat the oxygen to 450 K .
- We will call the current volume of the oxygen " 1 container." In the table below, record the volume and pressure of the oxygen in the first row.
- Drag the finger down to decrease the volume to $1 / 2$ of a container. Cool the oxygen to 450 K . Record the new volume

Volume vs. pressure at constant temperature	
Volume (containers)	Pressure (atm)

- Drag the finger down to decrease the volume to $1 / 4$ of a container. Cool the oxygen to 450 K . (This may take a while. Be patient!) Record the new volume and pressure in the third row of the table.

9. Write a statement describing how the volume of a quantity of a gas is related to its pressure at constant temperature. What is the formula that relates volume andpressure?
10. Draw a graph illustrating this relationship, with volume on the x-axis and pressure on the y-axis. Label the axes and give the graph a title. You do not have to scale the axes.

Experiment 3: Constant Pressure.

- Reset the simulation and choose oxygen.
- Drag the finger down until the pressure is about 100 atm. (The pressure will not change at first. Experiment!)
- In the table below, record the temperature and volume of the oxygen in the first row. (Estimate the volume as a fraction of a container.)
- Drag the finger upward to increase to volume to $1 / 2$ a container. Heat the oxygen until the pressure is once more at 100 atm. (Be patient!) Record the new temperature and volume in the second row of the table.
- Drag the finger upward to increase to volume to 1 container. Heat the oxygen until the pressure is once more at 100 atm . (Be very patient!) Record the new temperature and volume in the third row of the table.

Temperature vs. volume at constant pressure	
Temperature (K)	Volume (container)

11. Write a statement describing how the temperature of a quantity of a gas is related to its volume at constant pressure. What is the formula that relates volume and temperature?
12. Draw a graph illustrating this relationship, with temperature on the x-axis and volume on the y-axis. Label the axes and give the graph a title. You do not have to scale the axes.

Extension question

13. What did the bicycle pump do in these experiments? Why didn't we use it?
