" 1.00 g of a Compound" Lab Briefing

> A double replacement reaction of two (aq) solutions will often produce a precipitate (s)
A: The solid precipitate can then be easily isolated through a filtration process.
B: Some ionic compounds contain water molecules (hydrates) that are trapped within their crystal structure and therefore must be dried out.
$>$ LAB OBJECTIVE: To produce EXACTLY $\mathbf{1 . 0 0}$ grams of desired product (precipitate) using solubility rules of a double replacement reaction:

- Pre-Lab Step 1: Write a balanced chemical equation for your given reaction.
- Pre-Lab Step 2: Assign states of matter (aq or s) to $\underline{\text { ALL reactants and products in }}$ the chemical equation using solubility rules.
- Pre-Lab Step 3: Calculate the THEORETICAL MASS (g) of BOTH REACTANTS needed to exactly produce the desired 1.00 grams of the solid precipitate.
- A: 1.00 g of solid precipitate is the GIVEN \rightarrow Use MASS \rightarrow MASS stoichiometry to determine required mass of BOTH REACTANTS. Therefore, two (2) mass \rightarrow mass stoichiometry calculation set-up required.
- B: If ANY reactant is a HYDRATE, you MUST take the hydrate mass into account when determining its total MOLAR MASS.
- C: Number of water molecules MUST also be written on the product side to correctly balance the equation.
- Ex: $\mathrm{MgSO}_{4} \bullet 7 \mathrm{H}_{2} \mathrm{O}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{aq})} \rightarrow \mathrm{MgCO}_{3(\mathrm{~s})}+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
- $1 \mathrm{MgSO}_{4} \cdot \mathbf{7 H}_{2} \mathrm{O}_{(\text {aq })}+\mathbf{1} \mathrm{Na}_{2} \mathrm{CO}_{3}\left(\right.$ aq) $\rightarrow \mathbf{1} \mathrm{MgCO}_{3(\mathrm{~s})}+\mathbf{1} \mathrm{Na}_{2} \mathrm{SO}_{4}\left(\right.$ aq) $+\mathbf{7} \mathrm{H}_{2} \mathrm{O}$
- $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O} \rightarrow 120.37 \mathrm{~g} / \mathrm{mol} \mathrm{MgSO}_{4}+126.112 \mathrm{~g} / \mathrm{mol}_{\mathbf{7 H}}^{2} \mathbf{O}=\mathbf{2 4 6 . 4 8 2 2} \mathrm{g} / \mathrm{mol}$
- Pre-Lab Step 4: Watch the provided VIDEO for performing the proper filtration method/process.
> Actual Lab Step 1: Once the THEORETICAL MASS of both reactants are CALCULATED, dissolve both reactants in SEPARATE beakers using $\mathbf{2 5 m L}$ of DISTILLED water.
> Actual Lab Step 2: The two (2) DISSOLVED reactant solutions are then MIXED together in ONE of the two beakers (or into a third beaker) to produce the solid precipitate.
> Actual Lab Step 3: RECOVER precipitate through FILTRATION method using a piece of PRE-MASSED filter paper.
> Actual Lab Step 4: $\underline{\text { CAREFULLY }}$ remove $\underline{\text { ALL }}$ precipitate AND filter paper from funnel and place on DRY towel.
> Actual Lab Step 5: MASS dry precipitate AND filter paper together. SUBTRACT the total mass (precipitate + filter paper) from the original mass of filter paper to get just the mass of the precipitate.

AFTER Lab Step 1: Calculate \% YIELD to determine how much of precipitate was ACTUALLY produced or recovered.

- How close is your ACTUAL mass to the 1.00 g THEORETICAL mass of precipitate?
- \% Yield = Actual Yield of Precipitate

```
                        x }10
```

Theoretical Yield of Precipitate
> AFTER Lab Step 2: Calculate \% ERROR to determine how much of precipitate was NOT produced or recovered.

- \% Error = [Actual - Theoretical]

