$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$	$\left[\mathrm{H}^{+}\right]=10-\mathrm{pH}$	$\left[\mathrm{H}^{+}\right] \times[\mathrm{OH}]=1.0 \times 10^{-14}$
$\mathrm{pOH}=-\log [\mathrm{OH}]$	$[\mathrm{OH}]=10-\mathrm{pOH}$	$\mathrm{pH}+\mathrm{pOH}=14$

Part A: Table

Use the equations above to fill out the chart below. Use appropriate units in your answer when necessary.

	$\left[\mathrm{H}^{+}\right]$	pH	Acid/Base	[OH^{-}]	pOH
M HCl	$1.00 \times 10^{-4} \mathrm{M}$				
\qquad		11.0			
----------------------				$1.00 \times 10^{-6} \mathrm{M}$	
M HCl					12.5
$\ldots \mathrm{M} \mathrm{HCl}$		2.10			
------------------------	$4.00 \times 10^{-5} \mathrm{M}$				
M NaOH					1.30
------------------------				$2.30 \times 10^{-8} \mathrm{M}$	
----------------------		6.70			
M M NaOH	$9.50 \times 10^{-10} \mathrm{M}$				

Part B: Calculations

Solve the following problems by showing all work, including equations used. Use appropriate units in your answer when necessary.

1) What is the molar concentration of HNO_{3} in a solution that has a pH of 4.50 ?
2) What is the molar concentration of $\mathrm{Ca}(\mathrm{OH})_{2}$ in a solution that has a pOH of 3.50 ?
3) What is the pH of a 2.00 M solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$? (Assume that both H^{+}protons dissociate)
4) What is the pOH of a 0.100 M solution of LiOH ?
5) What concentration of $\mathrm{H}_{2} \mathrm{SO}_{4}$ has a pH of 1.00 , assuming that both protons dissociate?
