\qquad

1. What is the partial pressure of methane gas in a mixture of methane and helium if the total pressure is 345 mm Hg and the partial pressure of helium is 136 mm Hg ?

$$
\begin{aligned}
& P_{\text {Total }}=P_{\mathrm{He}}+P_{\mathrm{CiH}_{4}} \rightarrow P_{\mathrm{CH}}=P_{\text {Total }}-P_{\text {He }} \\
& P_{\mathrm{CH}_{4}}=(345 \mathrm{mmHg})-(136 \mathrm{mmHg}) \rightarrow P_{\mathrm{CH}_{4}}=209 \mathrm{mmHg}
\end{aligned}
$$

2. Find the total pressure for a mixture that contains five gases with partial pressures of $3.50 \mathrm{kPa}, 2.53 \mathrm{kPa}, 3.45 \mathrm{kPa}, 5.32 \mathrm{kPa}$ and 2.34 kPa .

$$
\begin{aligned}
& P_{\text {Total }}=P_{1}+P_{2}+P_{3}+P_{4}+P_{5} \\
& P_{\text {Total }}=(3.50 \mathrm{kPa})+(2.53 \mathrm{kPa})+(3.45 \mathrm{kPa})+(5.32 \mathrm{kPa})+(2.34 \mathrm{kPa}) \\
& P_{\text {Total }}=17.1 \mathrm{kPa}
\end{aligned}
$$

3. Find the partial pressure of helium in a three-gas mixture with a total pressure of 54.3 kPa if the partial pressure of the other two gases in the mixture is 23.3 kPa and 7.7 kPa .

$$
\begin{aligned}
& P_{\text {Total }}=P_{1}+P_{2}+P_{\text {He }} \rightarrow P_{\text {He }}=P_{\text {Total }}-P_{1}-P_{2} \\
& P_{\text {He }}=(54.3 \mathrm{kPa})-(23.3 \mathrm{kPa})-(7.7 \mathrm{kPa}) \\
& P_{\text {He }}=23.3 \mathrm{kPa}
\end{aligned}
$$

4. The total pressure in a closed container of three mixed gases is 100.0 kPa . The partial pressure of hydrogen in the mixture is 43.4 kPa and the partial pressure of oxygen is 23.2 kPa . The third gas in the mixture is methane, what is its partial pressure?

$$
\begin{aligned}
& P_{\text {Total }}=P_{\mathrm{H}_{2}}+P_{\mathrm{O}_{2}}+P_{\mathrm{CH}_{4}} \rightarrow P_{\mathrm{CH}_{4}}=P_{\text {Total }}-P_{\mathrm{H}_{2}}-P_{\mathrm{O}_{2}} \\
& P_{\mathrm{CH}_{4}}=(100.0 \mathrm{kPa})-(43.4 \mathrm{kPa})-(23.2 \mathrm{kPa}) \\
& P_{\mathrm{CH}_{4}}=33.4 \mathrm{kPa}
\end{aligned}
$$

5. What is the partial pressure of oxygen (in $\mathbf{~ m m ~ H g}$) in a mixture of helium and oxygen if the total pressure is 650 mm Hg and the partial pressure of helium is 335 kPa ?

$$
\begin{aligned}
& P_{\text {Total }}=P_{\mathrm{He}}+P_{\mathrm{O}_{2}} \rightarrow P_{\mathrm{O}_{2}}=P_{\text {Total }}-P_{\text {He }} \\
& \begin{array}{l|l|l|l|}
335 \mathrm{kPa} & 1 \mathrm{~atm} & 760 \mathrm{mmHg} \\
\hline 1 & 101.325 \mathrm{kPa} & 1 \mathrm{~atm}
\end{array} 2513.3 \mathrm{mmHg} \\
& P_{\mathrm{O}_{2}}=(650 \mathrm{mmHg})-(2513.3 \mathrm{mmHg}) \rightarrow P_{\mathrm{O}_{2}}=-1863 \mathrm{mmHg}
\end{aligned}
$$

6. Find the partial pressure of carbon monoxide in a gas mixture with a total pressure of 75.3 torr if the partial pressure of the other two gases in the mixture is 43.2 torr and 23.4 torr.

$$
\begin{aligned}
& P_{\text {Total }}=P_{1}+P_{2}+P_{\text {Co }} \rightarrow P_{\text {Co }}=P_{\text {Total }}-P_{1}-P_{2} \\
& P_{C_{0}}=(75.3 \text { Torr })-(43.2 \text { Torr })-(23.4 \text { Torr }) \\
& P_{C_{0}}=8.70 \text { Torr }
\end{aligned}
$$

7. Find the total pressure (in atm) for a mixture that contains six gases with partial pressure of $5.45 \mathrm{kPa}, 3.56 \mathrm{kPa}, 2.45 \mathrm{kPa}$, $4.95 \mathrm{kPa}, 8.34 \mathrm{kPa}$, and 7.34 kPa .

$$
\begin{aligned}
& P_{\text {Total }}=P_{1}+P_{2}+P_{3}+P_{4}+P_{5}+P_{6} \\
& P_{\text {Total }}=(5.45 \mathrm{kPa})+(3.56 \mathrm{kPa})+(2.45 \mathrm{kPa})+(4.95 \mathrm{kPa})+(8.34 \mathrm{kPa})+(7.34 \mathrm{kPa}) \\
& P_{\text {Total }}=32.09 \mathrm{kPa} \rightarrow \frac{32.09 \mathrm{kPa}}{1} \frac{1 \mathrm{~atm}}{101.325 \mathrm{kPa}} \rightarrow P_{\text {Total }}=0.317 \mathrm{~atm}
\end{aligned}
$$

8. The total pressure in a closed container of four mixed gases is 231.5 kPa . The partial pressure of helium in the mixture is 23.2 torr, the partial pressure of oxygen is $\mathbf{4 3 . 3}$ torr, and the partial pressure of argon is 54.3 torr. The fourth gas in the mixture is carbon dioxide, what is its partial pressure in kPa ?

$$
\begin{aligned}
& P_{\text {Total }}=P_{\mathrm{HE}}+P_{\mathrm{O}_{2}}+P_{\mathrm{Ar}}+P_{\mathrm{CO}_{2}} \rightarrow P_{\mathrm{CO}_{2}}=P_{\text {Total }}-P_{\mathrm{He}}-P_{\mathrm{O}_{2}}-P_{\mathrm{Ar}} \\
& P_{\mathrm{CO}_{2}}=(231.5 \mathrm{kPa})-[(23.2 \text { Torr })-(43.3 \text { Torr })-(54.3 \text { Torr })] \\
& P_{\mathrm{CO}_{2}}=(231.5 \mathrm{kPa})+(-120.8 \text { Torr }) \rightarrow \frac{-120.8 \text { Torr }}{1} \frac{1 \mathrm{~atm}}{760 \text { Tor }} 101.325 \mathrm{kPa} \\
& \text { lath } \\
& \\
& P_{\mathrm{CO}_{2}}=(231.5 \mathrm{kPa})+(-16.10 \mathrm{kPa})=P_{\mathrm{CO}_{2}}=215 \mathrm{kPa}
\end{aligned}
$$

9. Find the total pressure (in atm) for a mixture that contains two gases with partial pressures of 95.2 kPa and 67.4 kPa .

$$
\begin{aligned}
& P_{\text {Total }}=P_{1}+P_{2} \\
& P_{\text {Total }}=(95.2 \mathrm{kPa})+(67.4 \mathrm{kPa}) \rightarrow P_{\text {Total }}=162.6 \mathrm{kPa} \\
& \frac{162.6 \mathrm{kPa}}{1} \frac{1 \mathrm{~atm}}{101.325 \mathrm{kPa}} \Rightarrow P_{\text {Total }}=1.61 \mathrm{~atm}
\end{aligned}
$$

10. What is the partial pressure (in torr) of oxygen in a mixture of helium and oxygen if the total pressure is 456 mm Hg and the partial pressure of helium is 633 mm Hg ?

$$
\begin{aligned}
& P_{\text {Total }}=P_{\mathrm{He}}+P_{\mathrm{O}_{2}} \rightarrow P_{\mathrm{O}_{2}}=P_{\text {Total }}-P_{\mathrm{He}} \\
& P_{\mathrm{O}_{2}}=(456 \mathrm{mmHg})-(633 \mathrm{mmHg}) \rightarrow P_{\mathrm{O}_{2}}=-177 \mathrm{mmHg} \\
& \begin{array}{l|l|l|}
\hline-177 \mathrm{mmitg} & 1 \text { atm } & 760 \text { Torr } \\
\hline 1 & 760 \mathrm{mmHg} & \text { atm }
\end{array} P_{\mathrm{O}_{2}}=-177 \text { Torr }
\end{aligned}
$$

