Electron Configurations - Solutions

Note: The electron configurations in this worksheet assume that lanthanum (La) is the first element in the 4f block and that actinium (Ac) is the first element in the 5f block. If your periodic table doesn't agree with this, your answers for elements near the f-orbitals may be slightly different.

- 1) sodium $1s^2 2s^2 2p^6 3s^1$
- 2) iron $1s^22s^22p^63s^23p^64s^23d^6$
- 3) bromine $1s^22s^22p^63s^23p^64s^23d^{10}4p^5$
- 4) barium $1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}5p^66s^2$
- 5) neptunium $1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}5p^66s^24f^{14}5d^{10}6p^67s^25f^5$
- 6) cobalt [Ar] $4s^23d^7$
- 7) silver [Kr] $5s^24d^9$
- 8) tellurium [Kr] $5s^24d^{10}5p^4$
- 9) radium [Rn] 7s²
- 10) lawrencium [Rn] 7s²5f¹⁴6d¹
- 11) $1s^22s^22p^63s^23p^4$ sulfur
- 12) $1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^1$ rubidium
- 13) $[Kr] 5s^2 4d^{10}5p^3$ antimony
- 14) [Xe] $6s^24f^{14}5d^6$ osmium
- 15) [Rn] 7s²5f¹¹ einsteinium
- 16) $1s^22s^22p^63s^23p^64s^24d^{10}4p^5$ not valid (take a look at "4d")
- 17) $1s^22s^22p^63s^33d^5$ not valid (3p comes after 3s)
- 18) [Ra] 7s²5f⁸ not valid (radium isn't a noble gas)
- 19) $[Kr] 5s^24d^{10}5p^5 \text{ valid}$
- 20) [Xe] not valid (an element can't be its own electron configuration)

Electron Configurations Worksheet

Write the complete ground state electron configurations for the following:

1)	lithium	
2)	oxygen	
3)	calcium	
4)	titanium	
5)	rubidium	-
6)	lead	
7)	erbium	
Write the abbreviated ground state electron configurations for the following:		
8)	helium	
9)	nitrogen	
10)	chlorine	
11)	iron	
12)		
•	zinc	
13)	barium	

Electron Configurations Worksheet - Answers

Write the complete ground state electron configurations for the following:

1) lithium 1s²2s¹

 $2) \quad \text{oxygen} \quad 1s^2 2s^2 2p^4$

3) calcium $1s^22s^22p^63s^23p^64s^2$

4) titanium $1s^22s^22p^63s^23p^64s^23d^2$

5) rubidium $1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^1$

6) lead $1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}5p^66s^24f^{14}5d^{10}6p^2$

7) erbium $1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}5p^66s^24f^{12}$

Write the abbreviated ground state electron configurations for the following:

8) helium 1s² (this one cannot be abbreviated)

9) nitrogen [He] 2s²2p³

10) chlorine [Ne] $3s^23p^5$

11) iron [Ar] 4s²3d⁶

12) zinc [Ar] $4s^23d_1^{10}$

13) barium [Xe] 6s²

14) polonium [Xe] 6s²4f¹⁴5d¹⁰6p⁴

Chemistry | Practice - "Electron Configurations"

Use the following electron configurations and your periodic table to identify the element:

- 1. 1s² 2s² 2p⁶ 3s² 3p⁵ 2. 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3. 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰4p¹
- 4. Describe the method that you used to solve problems 1 3. Be specific.

Use the following clues to identify the element. Show any figuring in the space below.

- 5. This element has a 3p sublevel that contains 3 electrons.
- 6. This element has a 4s sublevel with 2 electrons for its outermost electrons.
- 7. This element has 1 electron in its 3d sublevel.
- 8. This element has 5 electrons in its 5p sublevel
- 9. This element has a completely filled 3p sublevel for its outermost electrons.
- 10. This element has 2 electrons in its 6p sublevel.

Solutions to "Electron Configurations"

1. chlorine

2. calcium

- 3. gallium
- **4.** I used the principal quantum number on the outermost electrons to determine the row on the periodic table where the element is located. I then counted the electrons, starting from the left side of that row until I reached the number of electrons that was indicated in the configuration.
- 5. phosphorus
- 6. calcium

7. scandium

8. iodine

9. argon

10. lead