\qquad

Molar Mass/2-Step MOLE Conversions:

1. How many moles of water are there if you have 2.52×10^{25} molecules of water?
2. How many moles of aluminum sulfite are there in 25.5 grams of aluminum sulfite?
3. Calculate the mass in grams for 0.250 moles of sodium chloride.
4. Calculate the number of moles in 100. grams of sodium chloride.

3-Step MOLE Conversions:

1. How many grams of calcium nitrate are in 3.24×10^{23} formula units (f.u.) of calcium nitrate?
2. How many grams of sulfur dioxide are in 3.15×10^{23} molecules of sulfur dioxide?
3. How many molecules of laughing gas (dinitrogen monoxide) are in 1.78×10^{23} grams of laughing gas?
4. How many grams of pure mercury are in 2.54×10^{23} atoms of mercury?

Percent (\%) Composition:

1. Determine the percent composition for each of the elements in copper (II) sulfate.
2. What is the percent composition of calcium in the compound calcium phosphide?
3. Determine the percent composition for each of the elements in ammonium hydroxide.
4. Determine the percent composition for each of the elements in carbon tetrachloride.

Empirical Formulas (E.F.):

1. Determine the empirical formula (E.F.) of a compound containing 24.7% potassium, 34.8% manganese, and 40.5% oxygen.
2. Quantitative analysis shows that a compound contains $32.4 \% \mathrm{Na}, 22.7 \% \mathrm{~S}$, and $45.0 \% \mathrm{O}$. Calculate the Empirical Formula (E.F.) of this compound.
3. Determine the empirical formula (E.F.) of a compound containing 67.6% mercury, 10.8% sulfur, and 21.6% oxygen.
4. A very flammable gas contains 60.0% Carbon and 40.0% Hydrogen. Calculate its Empirical Formula (E.F.).

Molecular Formulas (M.F.):

1. The compound methyl butanoate smells like apples. Given its percent composition as 58.8% carbon, 9.80% hydrogen, and 31.4% oxygen and a M.F. molar mass of $102 \mathrm{~g} / \mathrm{mol}$, what is the molecular formula (M.F.) for methyl butanoate?
2. Calculate the Molecular Formula of a compound containing $43.6 \% \mathrm{P}$ and $56.4 \% \mathrm{O}$, if the M.F. molar mass is $284 \mathrm{~g} / \mathrm{mol}$.
3. The empirical formula of a compound is $\mathrm{C}_{3} \mathrm{H}_{7}$, with a M.F. molar mass of $86.0 \mathrm{~g} / \mathrm{mol}$. Calculate the Molecular Formula (M.F).
4. The empirical formula of a compound is CH , with a M.F. molar mass of $26.0 \mathrm{~g} / \mathrm{mol}$. Calculate the Molecular Formula (M.F.).

Calculating Hydrates:

1. Hydrated sodium tetraborate, commonly called borax has the general formula $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \bullet \mathrm{nH}_{2} \mathrm{O}$. Chemical analysis indicates that this hydrate is 52.8% sodium tetraborate and 47.2% water. Determine the formula and name the hydrate.
