SPECIFIC HEAT & ENTHALPY IN PHASE CHANGES PRACTICE

Part I: Solve the following specific heat problems (Q = $m * C_p * \Delta T$). Show all work and proper units.

1. How much *heat (in calories)* is required to heat 5.00 grams of steam at 100. °C to 120. °C? (C_{Steam} = 0.500 cal/g°C)

2. How many *grams* of water are present if 1530 calories of heat is applied to raise its temperature by $52.0 \,^{\circ}\text{C}$? ($C_{\text{Water}} = 1.00 \, \text{cal/g}^{\circ}\text{C}$)

3. How much **heat** is gained when 20.0 grams of water increases its temperature from 50.0 °C to 60.0 °C? $(C_{water} = 4.184 \text{ J/g}^{\circ}\text{C})$

4. Determine the *specific heat* of a metal if 397 grams of the metal absorbs 34,500 Joules of heat as its temperature increases by 97.0 °C. What is the *identity* of the metal?

5. What is the *final temperature* of a 73.2 gram sample of cobalt with an initial temperature of 102 °C, after 6800 Joules of energy is applied? ($C_{Cobal} = 0.4210 \text{ J/g}^{\circ}\text{C}$)

Daut II. Calua tha fallaudha anthalau.	~ h h /0 *	^ε ΔH). Show all work and proper units.
Part II: Solve the following enthalby I	onase changes problems (U = m *	AHI. Snow all work and proper units.

1. How many *kilojoules (kJ)* of heat is required to melt 10.0 grams of a popsicle at 0°C? Assume that a popsicle has the same molar heat of fusion of water.

2. How many *grams* of ice at 0°C could be melted by the addition of 0.400 kJ of heat?

3. How much *heat (kJ)* is absorbed when 63.7 grams of water at 100°C is converted into steam at 100°C?

4. How many kilojoules (kJ) of heat is needed to boil 54.0 grams of water at its boiling point?

- 5. Identify each enthalpy change as either *endothermic* or *exothermic*:
 - a. 1 mol $C_3H_{8 (I)} \rightarrow 1$ mol $C_3H_{8 (g)}$
 - b. 1 mol Hg (I) → 1 mol Hg (S)
 - c. 1 mol NH_{3 (g)} \rightarrow 1 mol NH_{3 (l)}
 - d. 1 mol NaCl $_{(s)}$ + 3.88 kJ \rightarrow 1 mol NaCl $_{(aq)}$
 - e. NaOH_(s) \rightarrow Na⁺_(aq) + OH⁻_(aq) + 445.1 kJ