Unit 9 - Solutions \& Equilibrium Cumulative Practice

INTRODUCTION:

Molarity is one way to measure the concentration of a solution. The molarity of a solution is the number of moles of solute per liter of solution. The symbol for molarity is M. Thus a 3.0 molar solution of nitric acid, abbreviated $3.0 \mathrm{M} \mathrm{HNO}_{3}$, contains 3.0 moles of HNO_{3} per 1 liter of solution.

$$
\text { Molarity }=\frac{\text { Moles Solute }}{\text { Liters Solution }} \quad \text { Symbols for molarity: } M=\text { "molar" }=\frac{m o l}{L}
$$

PRACTICE PROBLEMS:

Solve the following problems. In the space below each problem, show a labeled setup (questions 3-6 require dimensional analysis method). Write the answers in the spaces at the right. Do not forget to include units!

1) What is the molarity of a solution that contains 210 . grams of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ in 2.75 liters of solution?
2) How many grams of potassium dichromate are required to prepare a $250 .-\mathrm{mL}$ solution whose concentration is $2.16 \mathrm{M} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$?
3) What is the volume (in mL) of a solution required to provide 2.14 g of sodium chloride from a 0.270 M solution?
4) What volume of 0.300 M solution can be prepared using 0.850 grams of acetic acid $\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)$?

MIXING SOLUTIONS:

Calculate the molarities of the following solutions. In the space below each problem, show a labeled setup. Write the answers in the spaces at the right. Do not forget to include units!

Formula for a solution: $\quad M=\underline{\text { Total Moles }}$
Total Volume
5) Calculate the final molarity when 70.0 mL of 3.0 M sodium chloride solution is added to 30.0 mL of a 1.00 M solution of sodium chloride.

Unit 9 - Solutions \& Equilibrium Cumulative Practice

DILUTIONS:

Calculate the molarities of the following solutions. In the space below each problem, show a labeled setup. Write the answers in the spaces at the right. Do not forget to include units!

Formula for dilution of a solution: $M_{1} V_{1}=M_{2} V_{2}$
6) A solution is prepared by dissolving 10.8 g ammonium sulfate, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$, in enough water to make 100.0 mL of stock solution. A 10.0 mL sample of this stock solution is added to 50.0 mL of water.

What is the molarity of the stock solution?

What is the final molarity of the dilution once water was added?
7) What volume of concentrated 12.0 M stock solution is necessary to make 1.00 L of 0.500 M solution?
8) To what volume should 25.0 mL of 15.0 M nitric acid $\left(\mathrm{HNO}_{3}\right)$ be diluted to prepare a 3.00 M solution?

PREPARING SOLUTIONS \& DILUTIONS:

Explain how you would make (prepare) the following solutions.

* SOLUTIONS Example: 0.750 L of $0.250 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$
"Dissolve 26.64 grams of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ with solvent (water) in a beaker. Pour the solution into a graduated cylinder and then dilute up to 750 milliliters."

9) 250. mL of 0.750 M lithium nitrite

* DILUTIONS Example: 2.00 L of a 0.250 M NaOH solution from 1.00 M NaOH stock solution.
"Measure 500. mL of 1.00 M NaOH stock solution. Dilute with water until the solution reaches 2.00 L."

10) $5.00 \times 10^{2} \mathrm{~mL}$ of $1.75 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution, starting with an 8.61 M stock solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Unit 9 - Solutions \& Equilibrium Cumulative Practice

SOLUBILITY CURVES:

1. A solution is also known as a \qquad mixture. How is a solution different from a heterogeneous mixture?
2) In an aqueous solution of sodium chloride, what is the solute? \qquad What is the solvent? \qquad
3) Why is water considered the universal solvent?
4) Does solubility of a solid solute increase of decrease as temperature increases?

Here's an example of how to read the graph. Find the curve for KClO_{3}.
5) At $30^{\circ} \mathrm{C}$ approximately 10 g of KClO_{3} will dissolve in 100 g of water. If the temperature is increased to $80^{\circ} \mathrm{C}$, approximately \qquad of the substance will dissolve in 100 g (or 100 mL) of water.

Directions: Use the graph to answer the following questions. REMEMBER UNITS!
6) What mass of solute will dissolve in 100 mL of water at the following temperatures?
a. KNO_{3} at $70^{\circ} \mathrm{C}=$ \qquad
b. NaCl at $100^{\circ} \mathrm{C}=$ \qquad
c. $\mathrm{NH}_{4} \mathrm{Cl}$ at $90^{\circ} \mathrm{C}=$
d. Which of the above three substances is most soluble in water at $15^{\circ} \mathrm{C} .=$ \qquad

7) On a solubility curve, the lines indicate the concentration of a \qquad solution - the maximum amount of solute that will dissolve at that specific temperature.

Unit 9 - Solutions \& Equilibrium Cumulative Practice

8) Values on the graph (below, along, above) a curve represent unsaturated solutions - more solute could be dissolved at that temperature.

Types of Solutions - Use the Solubility Curve

9) Label the following solutions as saturated or unsaturated. If unsaturated, write how much more solute can be dissolved in the solution.

Solution	Saturated or Unsaturated?	If unsaturated: How much more solute can dissolve in the solution?
(a) a solution that contains 70 g of NaNO_{3} at $30^{\circ} \mathrm{C}$ (in 100 mL H H)		
(b) a solution that contains 50 g of $\mathrm{NH}_{4} \mathrm{Cl}$ at $50^{\circ} \mathrm{C}$ (in 100 mL H O)		
(c) a solution that contains 20 g of KClO_{3} at $50^{\circ} \mathrm{C}$ (in 100 mL H H O)		
(d) a solution that contains 70 g of KI at $0^{\circ} \mathrm{C}$ (in $100 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$)		

10) What is the solubility of KCl at $5^{\circ} \mathrm{C}$? \qquad c. What is the solubility of $\mathrm{Ce}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ at $10^{\circ} \mathrm{C}$? \qquad
11) What is the solubility of $\underline{\mathrm{KCl}}$ at $25^{\circ} \mathrm{C}$? \qquad d. What is the solubility of $\mathrm{Ce}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ at $50^{\circ} \mathrm{C}$? \qquad
12) At $90^{\circ} \mathrm{C}$, you dissolved 10 g of KCl in 100 g of water. Is this solution saturated or unsaturated?
13) A mass of 100 g of NaNO_{3} is dissolved in 100 g of water at $80^{\circ} \mathrm{C}$.
a) Is the solution saturated or unsaturated? \qquad
b) As the solution is cooled, at what temperature should solid first appear in the solution? Explain.

* Use the solubility curve to answer questions 14-16:

14) Which compound is most soluble at $20^{\circ} \mathrm{C}$? \qquad Which is the least soluble at $40^{\circ} \mathrm{C}$? \qquad
15) Which substance on the graph is least soluble at $10^{\circ} \mathrm{C}$? \qquad
16) A mass of 80 g of KNO_{3} is dissolved in 100 g of water at $50^{\circ} \mathrm{C}$. The solution is heated to $70^{\circ} \mathrm{C}$. How many more grams of potassium nitrate must be added to make the solution saturated? Explain your reasoning.
17) What are 3 ways to increase the solubility of a solid substance in a solid?
18) How can the solubility of a gas in a liquid be increased?

Unit 9 - Solutions \& Equilibrium Cumulative Practice

CHEMICAL EQUILIBRIUM:

Write the equilibrium expression (K) for the following reactions:

1. $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \leftrightarrows 2 \mathrm{HI}_{(\mathrm{g})} \rightarrow$ \qquad

$$
\text { 2: } \mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{s})} \leftrightarrows \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{HCl}_{(\mathrm{g})} \rightarrow
$$

\qquad
3. $\mathrm{As}_{4} \mathrm{O}_{6(\mathrm{~s})}+6 \mathrm{C}_{(\mathrm{s})} \leftrightarrows \mathrm{As}{ }_{(\mathrm{g})}+6 \mathrm{CO}(\mathrm{g}) \rightarrow$

$$
\text { 4: } \mathrm{SnO}_{2(\mathrm{~s})}+2 \mathrm{CO}_{(\mathrm{g})} \leftrightarrows \mathrm{Sn}_{(\mathrm{s})}+2 \mathrm{CO}_{2(\mathrm{~g})} \quad \rightarrow
$$

5. $\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightarrow$

$$
\text { 6: } \mathrm{CaCO}_{3(\mathrm{~s})} \leftrightarrows \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})} \rightarrow
$$

Balance each equation and then write the equilibrium expression (K) for each reaction:

1. \qquad $\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+$ \qquad $\mathrm{O}_{2(\mathrm{~g})} \leftrightarrows$ \qquad $\mathrm{CO}_{2}{ }_{(\mathrm{g})}+$ \qquad $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
2. \qquad $\mathrm{FeO}_{(\mathrm{s})}{ }^{+}$ \qquad $\mathrm{CO}(\mathrm{g}) \xrightarrow{\leftrightarrows}$ \qquad $\mathrm{Fe}(\mathrm{s})+$ \qquad $\mathrm{CO}_{2(\mathrm{~g})} \rightarrow$
3. \qquad $\mathrm{KCl}_{(1)}+$ \qquad $\mathrm{Na}_{(1)} \leftrightarrows$ \qquad $\mathrm{NaCl}_{(1)}+$ \qquad $\mathrm{K}_{(9)} \quad \rightarrow$ \qquad
4. \qquad $\mathrm{NaCl}_{(s)}{ }^{+}$ \qquad $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{I}) \leftrightarrows$ \qquad $\mathrm{HCl}_{(\mathrm{g})}+$ \qquad $\mathrm{NaHSO}_{4}(\mathrm{~s}) \rightarrow$
5. \qquad $P_{4(s)}+$ \qquad $\mathrm{NO}(\mathrm{g}) ~ \leftrightarrows$ \qquad $\mathrm{P}_{4} \mathrm{O}_{6}(\mathrm{~s})+$ \qquad $\mathrm{N}_{2}(\mathrm{~g}) \quad \rightarrow$ \qquad
6. \qquad $\mathrm{NO}{ }_{(\mathrm{g})}{ }^{+}$ \qquad $\mathrm{H}_{2}(\mathrm{~g}) \stackrel{\leftrightarrows}{\leftrightarrows}$ \qquad $\mathrm{N}_{2}(\mathrm{~g})+$ \qquad $\mathrm{H}_{2} \mathrm{O}_{(1)} \rightarrow$ \qquad

Unit 9 - Solutions \& Equilibrium Cumulative Practice

LeChatelier's Principle:

Part I: Complete the following table. Write (left, right, or none) for equilibrium shift, and (decreases, increases, or remains same), for concentrations of reactants and products and for equilibrium constant (K):
$52.7 \mathrm{~kJ}+1 \mathrm{H}_{2(\mathrm{~g})}+1 \mathrm{I}_{2(\mathrm{~g})} \leftrightarrows 2 \mathrm{HI}_{(\mathrm{g})}$

Stress Type	Equilibrium Shift	$\left[\mathrm{H}_{2}\right]$	$\left[\mathrm{I}_{2}\right]$	$[\mathrm{HI}]$	Equilibrium Constant (K)
Add H2		$\ldots---$			
Add I_{2}			$\ldots---$		
Add HI					
Remove H_{2}					
Remove I_{2}					
Remove HI					
\uparrow Temperature					
\downarrow Temperature					
\uparrow Pressure					
\downarrow Pressure					

Part II: Complete the following table. Write (left, right, or none) for equilibrium shift, and (decreases, increases, or remains same), for concentrations of reactants and products and for equilibrium constant (K):
$1 \mathrm{NaOH}_{(s)} \leftrightarrows 1 \mathrm{Na}^{+}{ }_{(a q)}+1 \mathrm{OH}^{-}(a q)+44.3 \mathrm{~kJ}$
(Remember that pure solids and liquids do not affect equilibrium values)

Stress Type	Equilibrium Shift	Amount of $\mathrm{NaOH}_{(s)}$	$\left[\mathrm{Na}^{+}\right]$		Equilibrium Constant (K)
Add $\mathrm{NaOH}_{(s)}$		$-\ldots--$			
Add NaCl $\left(\right.$ Adds $\left.\mathrm{Na}^{+}\right)$			$\ldots---$		
Add $\mathrm{KOH}^{\left(\text {Adds } \mathrm{OH}^{-}\right)}$				$-\ldots--$	
Add H^{+} $\left(\right.$Removes $\left.\mathrm{OH}^{-}\right)$					
\uparrow Temperature					
\downarrow Temperature					
\uparrow Pressure					
\downarrow Pressure					

