INTRODUCTION:

Molarity is one way to measure the concentration of a solution. The molarity of a solution is the number of moles of solute per liter of solution. The symbol for molarity is M. Thus a 3.0 molar solution of nitric acid, abbreviated 3.0 M HNO₃, contains 3.0 moles of HNO₃ per 1 liter of solution.

 $Molarity = \frac{Moles \ Solute}{Liters \ Solution}$ Symbols for molarity: $M = "molar" = \frac{mol}{L}$

PRACTICE PROBLEMS:

Solve the following problems. In the space below each problem, show a labeled setup (questions 3-6 require dimensional analysis method). Write the answers in the spaces at the right. Do not forget to include units!

- 1) What is the molarity of a solution that contains 210. grams of $Al_2(SO_4)_3$ in 2.75 liters of solution?
- 2) How many grams of potassium dichromate are required to prepare a 250.-mL solution whose concentration is 2.16 $M K_2 Cr_2 O_7$?
- 3) What is the volume (*in mL*) of a solution required to provide 2.14 g of sodium chloride from a 0.270 M solution?

4) What volume of 0.300 M solution can be prepared using 0.850 grams of acetic acid (HC₂H₃O₂)?

MIXING SOLUTIONS:

Calculate the molarities of the following solutions. In the space below each problem, show a labeled setup. Write the answers in the spaces at the right. Do not forget to include units! Formula for a solution: $M = \underline{Total Moles}$

Total Volume

5) Calculate the final molarity when 70.0 mL of 3.0 M sodium chloride solution is added to 30.0 mL of a 1.00 M solution of sodium chloride.

DILUTIONS:

Calculate the molarities of the following solutions. In the space below each problem, show a labeled setup. Write the answers in the spaces at the right. Do not forget to include units!

Formula for dilution of a solution: $M_1V_1 = M_2V_2$

6) A solution is prepared by dissolving 10.8 g ammonium sulfate, (NH₄)₂SO₄, in enough water to make 100.0 mL of stock solution. A 10.0 mL sample of this stock solution is added to 50.0 mL of water.

What is the molarity of the *stock* solution?

What is the final molarity of the *dilution* once water was added?

- 7) What volume of concentrated 12.0 M stock solution is necessary to make 1.00 L of 0.500 M solution?
- 8) To what volume should 25.0 mL of 15.0 M nitric acid (HNO₃) be diluted to prepare a 3.00 M solution?

PREPARING SOLUTIONS & DILUTIONS:

Explain how you would make (prepare) the following solutions.

* SOLUTIONS Example: 0.750 L of 0.250 M Na₂SO₄

"Dissolve 26.64 grams of Na_2SO_4 with solvent (water) in a beaker. Pour the solution into a graduated cylinder and then dilute up to 750 milliliters."

- 9) 250. mL of 0.750 M lithium nitrite
 - * DILUTIONS Example: 2.00 L of a 0.250 M NaOH solution from 1.00 M NaOH stock solution.

"Measure 500. mL of 1.00 M NaOH stock solution. Dilute with water until the solution reaches 2.00 L."

10) 5.00 x 10^2 mL of 1.75 M H₂SO₄ solution, starting with an 8.61 M stock solution of H₂SO₄.

SOLUBILITY CURVES:

- 1. A solution is also known as a ______ mixture. How is a solution different from a heterogeneous mixture?
- 2) In an aqueous solution of sodium chloride, what is the solute? _____What is the solvent? _____
- 3) Why is water considered the universal solvent?
- 4) Does solubility of a solid solute increase of decrease as temperature increases?

Here's an example of how to read the graph. Find the curve for KClO₃.

5) At 30°C approximately 10g of KClO₃ will dissolve in 100g of water. If the temperature is increased to 80°C, approximately ______ of the substance will dissolve in 100g (or 100mL) of water.

<u>Directions</u>: Use the graph to answer the following questions. REMEMBER UNITS!

- 6) What mass of solute will dissolve in 100mL of water at the following temperatures?
 - a. KNO₃ at 70°C = _____
 - b. NaCl at 100°C= _____
 - c. NH₄Cl at 90°C= _____
 - d. Which of the **above** three substances is most soluble in water at 15°C. = _____

7) On a solubility curve, the lines indicate the concentration of a ______ solution - the maximum amount of solute that will dissolve at that specific temperature.

8) Values on the graph <u>(below, along, above)</u> a curve represent <u>unsaturated solutions</u> - more solute could be dissolved at that temperature.

Types of Solutions - Use the Solubility Curve

9) Label the following solutions as saturated or unsaturated. If unsaturated, write how much more solute can be dissolved in the solution.

Solution	Saturated or Unsaturated?	If unsaturated: How much more solute can dissolve in the solution?
(a) a solution that contains 70g of		
NaNO ₃ at 30 $^{\circ}$ C (in 100 mL H ₂ O)		
(b) a solution that contains 50g of		
NH₄Cl at 50°C (in 100 mL H₂O)		
(c) a solution that contains 20g of		
KClO ₃ at 50°C (in 100 mL H ₂ O)		
(d) a solution that contains 70g of KI		
at 0°C (in 100 mL H ₂ O)		

- 10) What is the solubility of <u>KCl</u> at 5°C? _____ c. What is the solubility of $Ce_2(SO_4)_3$ at 10°C? _____
- 11) What is the solubility of <u>KCl</u>at 25°C? _____ d. What is the solubility of <u>Ce₂(SO₄)</u> at 50°C? _____
- 12) At 90°C, you dissolved 10 g of KCl in 100. g of water. Is this solution saturated or unsaturated?
- 13) A mass of 100 g of NaNO₃ is dissolved in 100 g of water at 80° C.
 - a) Is the solution saturated or unsaturated?_____
 - b) As the solution is cooled, at what temperature should solid first appear in the solution? Explain.

* Use the solubility curve to answer questions 14-16:

14) Which compound is most soluble at 20 °C? _____ Which is the least soluble at 40 °C? _____

15) Which substance on the graph is **least** soluble at 10°C? _____

- 16) A mass of 80 g of KNO₃ is dissolved in 100 g of water at 50 °C. The solution is heated to 70°C. How many more grams of potassium nitrate must be added to make the solution saturated? Explain your reasoning.
- 17) What are 3 ways to increase the solubility of a solid substance in a solid?
- 18) How can the solubility of a gas in a liquid be increased?

CHEMICAL EQUILIBRIUM:

Write the equilibrium expression (K) for the following reactions:

1. $H_{2(q)} + I_{2(q)} \stackrel{\leftarrow}{\rightarrow} 2 HI_{(q)} \stackrel{\rightarrow}{\rightarrow}$ 2: $NH_4Cl_{(s)} \leftrightarrows NH_{3(g)} + HCl_{(g)} \rightarrow$ 3. $As_4O_6(s) + 6C(s) \xrightarrow{\leftarrow} As_4(q) + 6CO(q) \xrightarrow{\rightarrow}$ 4: $\operatorname{SnO}_{2(s)} + 2 \operatorname{CO}_{(q)} \leftrightarrows \operatorname{Sn}_{(s)} + 2 \operatorname{CO}_{2(q)} \rightarrow$ 5. $Fe_2O_{3(s)} + 3H_{2(g)} \leftrightarrows 2Fe_{(s)} + 3H_2O_{(g)} \rightarrow$ 6: $CaCO_{3(s)} \leftrightarrows CaO_{(s)} + CO_{2(q)} \rightarrow$ Balance each equation and then write the equilibrium expression (K) for each reaction: 1. _____ $C_2H_{6 (g)} + _____ O_{2 (g)} \iff ____ CO_{2 (g)} + _____ H_2O_{(g)}$ 2. ____ FeO $_{(s)}$ + ____ CO $_{(q)}$ \leftrightarrows Fe $_{(s)}$ + ____ CO_{2 (g)} \rightarrow _____ 3. ____ KCl (I) + ____ Na (I) \leftrightarrows ____ NaCl (I) + ____ K (g) \rightarrow _____ 4. ____ NaCl (s) + ____ H_2SO₄ (l) ≒ ____ HCl (q) + ____ NaHSO₄ (s) → _____ 5. $P_{4 (s)} +$ NO $_{(g)} \xrightarrow{\leftarrow} P_4O_{6 (s)} +$ N2 $_{(g)} \rightarrow$ 6. $NO_{(q)} + H_{2(q)} \Leftrightarrow N_{2(g)} + H_{2O_{(l)}} \rightarrow$

LeChatelier's Principle:

Part I: Complete the following table. Write (left, right, or none) for equilibrium shift, and (decreases, increases, or remains same), for concentrations of reactants and products and for equilibrium constant (K): 52.7 kJ + 1 $H_{2(g)}$ + 1 $I_{2(g)} \Leftrightarrow$ 2 $HI_{(g)}$

Stress Type	Equilibrium Shift	[H2]	[I ₂]	[HI]	Equilibrium Constant (K)
Add H ₂					
Add I ₂					
Add HI					
Remove H ₂					
Remove I ₂					
Remove HI					
↑ Temperature					
\downarrow Temperature					
↑ Pressure					
↓ Pressure					

Part II: Complete the following table. Write (left, right, or none) for equilibrium shift, and (decreases, increases, or remains same), for concentrations of reactants and products and for equilibrium constant (K): $1 \text{ NaOH}_{(s)} \leftrightarrows 1 \text{ Na}^+_{(aq)} + 1 \text{ OH}^-_{(aq)} + 44.3 \text{ kJ}$

(Remember that pure solids and liquids do not affect equilibrium values)

Stress Type	Equilibrium Shift	Amount of NaOH _(s)	[Na ⁺]	[OH-]	Equilibrium Constant (K)
Add NaOH(s)					
Add NaCl (Adds Na⁺)					
Add KOH (Adds OH⁻)					
Add H⁺ (Removes OH⁻)					
↑ Temperature					
↓ Temperature					
↑ Pressure					
↓ Pressure					