
Potential Energy Diagrams Practice

Name:		

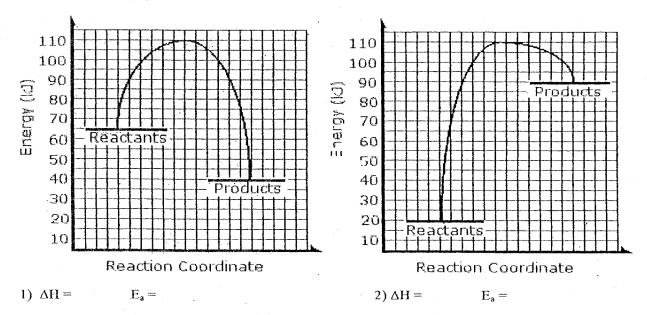
- 1. Which letter (a–f) represents potential energy (ΔH) of the products?
- 2. Which letter (a-f) represents potential energy (ΔH) of the activated complex?
- 3. Which letter (a-f) represents potential energy (ΔH) of the reactants?
- **4.** Which letter (a-f) represents activation energy (E_a) of the forward reaction (reactants)?
- 5. Which letter (a-f) represents heat of reaction (ΔH_{Rxn}) of the forward reaction?
- 6. Is the forward reaction endothermic or exothermic?
- **7.** Which letter (a-f) represents activation energy (E_a) of the reverse reaction (products)?
- **8.** Which letter (a-f) represents heat of reaction (ΔH_{Rxn}) of the reverse reaction?
- 9. Is the reverse reaction endothermic or exothermic?

Heat content (H) kilojoules 1200 160 120 120 40 40 Time

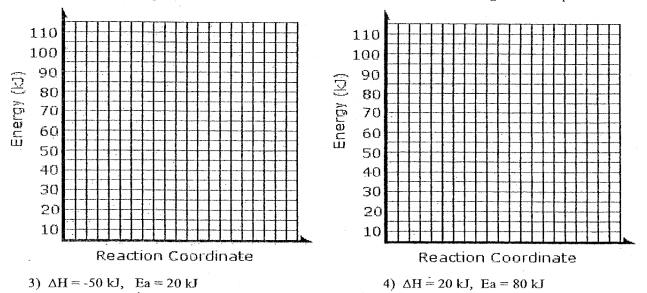
- **10.** The potential energy (ΔH) of the reactants in the forward reaction is about _____ kilojoules (kJ).
- **11.** The potential energy (ΔH) of the products in the forward reaction is about _____kilojoules (kJ).
- **12.** The potential energy (ΔH) of the activated complex in the forward reaction is about _____ kilojoules (kJ).
- **13.** The activation energy (E_a) of the forward reaction (reactants) is about _____ kilojoules (kJ).
- **14.** The forward reaction is _____(endothermic or exothermic).
- **15.** The potential energy (ΔH) of the reactants in the reverse reaction is about ______ kilojoules (kJ).
- **16.** The potential energy (ΔH) of the products in the reverse reaction is about _____ kilojoules (kJ).
- 17. The potential energy (ΔH) of the activated complex in the reverse reaction is about ______kilojoules (kJ).
- **18.** The activation energy (E_a) of the reverse reaction (products) is about _____ kilojoules (kJ).
- **19.** The reverse reaction is ______ (endothermic or exothermic).

PART C - REACTION RATES (KINETICS)

Place an "X" next to each action that would most likely INCREASE the reaction rate.


- 1. ____ Lowering the temperature of the reactants.
- 2. ____ Dissolving two solids in water before mixing them together.
- 3. _____ Diluting an aqueous solution of HCl with water before adding a piece of magnesium.
- 4. Grinding a solid into fine particles.
- 5. ____ Adding an enzyme catalyst.

PART D - CREATING A POTENTIAL ENERGY DIAGRAM


NOTE: For each example, Activation Energy (E_a) is for the <u>forward</u> reaction, and will always drop down to the reactants.

NOTE: For each reaction, ΔH is the enthalpy of the reaction (ΔH_{Rxn}) of the **forward** reaction.

For the following graphs, draw arrows and calculate the values of ΔH and E_a .

On the following graphs draw a reaction coordinate for a reaction that fits the given descriptions

