Potential Energy Diagrams Practice

Reactants

(c)

Activated Complex

(d)

Products z

Attraction

(e)

Attraction

(e)

Attraction

(e)

Attraction

Reaction coordinate (x + y - z)

Endothermic

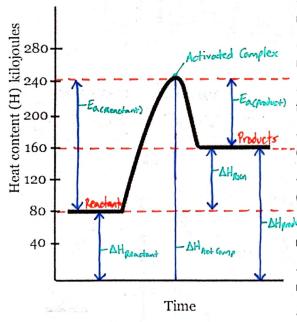
1. Which letter (a–f) represents potential energy (ΔH) of the products?

Name:

2. Which letter (a-f) represents potential energy (ΔH) of the activated complex?

3. Which letter (a-f) represents potential energy (ΔH) of the reactants?

4. Which letter (a-f) represents activation energy (E_a) of the forward reaction (reactants)?


5. Which letter (a-f) represents heat of reaction (ΔH_{Rxn}) of the forward reaction?

6. Is the forward reaction endothermic or exothermic?

7. Which letter (a-f) represents activation energy (E_a) of the reverse reaction (products)?

8. Which letter (a-f) represents heat of reaction (ΔH_{Rxn}) of the reverse reaction?

9. Is the reverse reaction endothermic or exothermic?

10. The potential energy (ΔH) of the reactants in the forward reaction is about $80 \, \text{kJ}$ kilojoules (kJ).

11. The potential energy (ΔH) of the products in the forward reaction is about ______ kilojoules (kJ).

12. The potential energy (Δ H) of the activated complex in the forward reaction is about $240 \, \text{kJ}$ kilojoules (kJ).

13. The activation energy (E_a) of the forward reaction (reactants) is about | 60 kJ | kilojoules (kJ). (240) - (80) = 160 kJ

T5. The potential energy (ΔH) of the reactants in the reverse reaction is about 80 kJ kilojoules (kJ).

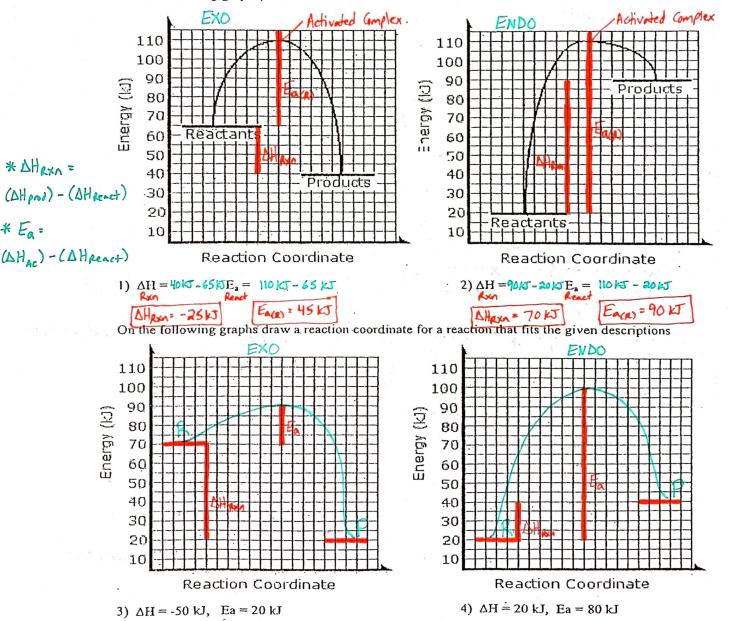
16. The potential energy (ΔH) of the products in the reverse reaction is about _____ kilojoules (kJ).

17. The potential energy (ΔH) of the activated complex in the reverse reaction is about 240 kJ kilojoules (kJ).

18. The activation energy (E_a) of the reverse reaction (products) is about ______ kilojoules (kJ). (240)-(160) = 80 kilojoules

19. The reverse reaction is <u>Exothermic</u> (endothermic or exothermic).

PART C - REACTION RATES (KINETICS)


Place an "X" next to each action that would most likely INCREASE the reaction rate.

- Lowering the temperature of the reactants. ↓T = ↓ Rxx Rake
- 2. Nissolving two solids in water before mixing them together. A surfactore = 1 km Rate
- 3. ____ Diluting an aqueous solution of HCI with water before adding a piece of magnesium.
- 4. _X Grinding a solid into fine particles. 1 Surface Area = 1 Run Rade
- 5. X Adding an enzyme catalyst. LE TRAN Rate

PART D - CREATING A POTENTIAL ENERGY DIAGRAM

NOTE: For each example, Activation Energy (E_a) is for the <u>forward</u> reaction, and will always drop down to the reactants. NOTE: For each reaction, ΔH is the enthalpy of the reaction (ΔH_{Rxn}) of the <u>forward</u> reaction.

For the following graphs, draw arrows and calculate the values of ΔH and E_a .

