Le Chatelier's Principle

Name:_____

CHEMICAL EQUILIBRIUM REVIEW:

Answer the following problems by showing all of your work:

- 1. For the equilibrium reaction here: $1 H_{2(g)} + 1 I_{2(g)} \Rightarrow 2 H I_{(g)}$, the concentrations are found to be... [H₂] = 0.106 M, [I₂] = 0.035 M, and [HI] = 1.29 M. What is the equilibrium constant (K)? Which direction of the reaction is favored?
- 2. Calculate the value of the equilibrium constant (K) for the reaction shown below, if 0.1908 moles of CO_2 , 0.0908 moles of H₂, 0.0092 moles of CO, and 0.0092 moles of H₂O vapor are present in a 2.00 Liter reaction vessel at equilibrium.

 $\underline{\qquad} CO_{2 (g)} + \underline{\qquad} H_{2 (g)} \leftrightarrows CO_{(g)} + \underline{\qquad} H_{2}O_{(g)}$

LE CHATELIER'S PRINCIPLE:

Complete the following table by writing (left, right, or none) for equilibrium shift, and (decreases, increases, changes, or remains the same), for the concentrations of reactants and products and for the equilibrium constant (K): $\rightarrow 1 N_{2(g)} + 3 H_{2(g)} \leftrightarrows 2 NH_{3(g)} + Heat$

Stress Type	Equilibrium	[N ₂]	[H₂]	[NH₃]	Equilibrium
	Shift				Constant (K)
Add N ₂	Right		Decreases	Increases	Remains same
Add H ₂					
Add NH ₃					
Remove N ₂					
Remove H ₂					
Remove NH3					
↑ Temperature					
\downarrow Temperature					
↑ Pressure					
↓ Pressure					