Drawing Lewis	Structures	Practice
----------------------	------------	-----------------

Name:

<u>INSTRUCTIONS</u>: Draw a complete Lewis Structure for the following <u>molecular</u> compounds. **BE SURE TO DRAW ITS RESONCE STRUCTURE IF IT HAS ONE!**

- Quick Steps:
 - 1) Count the **TOTAL** number of valence electrons in the molecule
 - 2) Draw a skeleton structure for the molecule using single bonds between each terminal (outside) atom
 - <u>Least</u> electronegative element <u>usually</u> goes in the middle (central atom)
 - Each single bond = a pair of electrons (2 electrons)
 - 3) Fill up each terminal atom with an octet of electrons (8 valence electrons)
 - NOTE: Hydrogen (H) fulfills its octet with only *two (2)* valence electrons
 - 4) Count the # of electrons PLACED on molecule compared to the TOTAL number of valence electrons available
 - 5) Use additional bonds (double or triple) if there are left-over electrons and place on central atom (NOTE: CNOPS)
 - For each additional bond formed, erase a pair of electrons on that terminal atom
 - 6) Draw the *FINAL* Lewis Structure <u>AND</u> its **Resonance Structure** <u>IF</u> it has one.

, <u>—</u>	
1. PCl ₃	2. PBr ₃
3. CN	4. CH₃OH (challenge problem)
5. NH ₄ ⁺	6. N₂H₂ (challenge problem)

7. C₂H ₄ (challenge problem)	8. SO ₃ ²⁻
9. CO ₃ ² -	10. PCI ₅
11. NO ₂ -	12. BF ₃