\qquad

Part I: Calorimetry
$\mathrm{q}=\mathrm{m} \times \mathrm{C}_{\mathrm{p}} \times \Delta \mathrm{T} \quad \Delta \mathrm{T}=\mathrm{T}_{\text {final }}-\mathrm{T}_{\text {initial }}$
$\mathrm{q}_{\text {system }}=-\mathrm{q}_{\text {surrounding }}$

1. A block of metal with a mass of 70.3 grams is heated to $100 .{ }^{\circ} \mathrm{C}$ and then dropped into a Styrofoam cup calorimeter containing 50.0 grams of water at $22.5^{\circ} \mathrm{C}$. The final temperature of the block and water together is $32.7^{\circ} \mathrm{C}$.
a. If the heat gained by the water was lost by the metal, calculate the temperature change of the metal.
b. Calculate the temperature change of the water?
c. Set up $\mathbf{q}_{\text {metal }}=-\mathbf{q}_{\text {water }}$ to solve for the specific heat of the metal.
d. Use a reference sheet of specific heats to determine the identity of the metal.
2. CHALLENGE: A block of copper with a mass of 95.4 grams is heated to $100 .{ }^{\circ} \mathrm{C}$ and dropped into a Styrofoam cup calorimeter containing 50.0 grams of water at $24.0^{\circ} \mathrm{C}$. The metal and water are allowed to come to a constant equilibrium temperature.
a. Set up an algebraic expression for " $\mathrm{q}_{\text {copper }}$ ". The specific heat of copper is on the reference sheet.
b. Set up an algebraic expression for " $\mathrm{q}_{\text {water }}$ ". The specific heat of water is on the reference sheet.
c. Use $\mathbf{q}_{\text {metal }}=-\mathbf{q}_{\text {water }}$ to solve for the final temperature of the water and copper combined.
3. CHALLENGE: A 63.5 gram chunk of copper was heated in a Bunsen burner flame until it was red hot. It was then dropped into a Styrofoam cup calorimeter containing 100. grams of water at $21.0^{\circ} \mathrm{C}$. The metal and water were allowed to come to a constant equilibrium temperature of $65.7^{\circ} \mathrm{C}$.
a. Calculate the heat energy (q) of the water.
b. What was the initial temperature of the copper? (Remember: $\boldsymbol{q}_{\text {metal }}=-\boldsymbol{q}_{\text {water }}$)
c. Calculate the temperature change of the copper.

Part II: Enthalpy \& Heating Curves

$$
q=m \times C_{p} \times \Delta T
$$

$$
q=m \times \Delta H_{\text {fus }} \quad q=m \times \Delta H_{\text {vap }}
$$

4. Calculate the total amount of heat $(\mathrm{q} / \Delta \mathrm{H})$ required to completely convert 50.0 grams of ice at $-10.0^{\circ} \mathrm{C}$ to steam at $120 .{ }^{\circ} \mathrm{C}$. Hint: Draw a heating curve to determine ΔT^{\prime} s for each phase change.
