| Which particle has approximately the same mass<br>as a proton?<br>(A) alpha (C) electron<br>(B) hets (C) and (C) a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Jnit 2         Atomic Theory & Structure           8. Which of the following particles has the <i>least</i> mass?         (A) an electron           (A) an electron         (C) a hyrogen atom           (B) a region         (D) a particutor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ol> <li>Atoms of <sup>14</sup>O, <sup>13</sup>O, and <sup>14</sup>O have the same<br/>number of<br/>(A)neutrons, but a different number of protons<br/>(B) protons, but a different number of neutrons<br/>(C) protons, but a different number of electrons</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ol> <li>Which substomic particles have a mass of<br/>approximately 1 atomic mass unit each?</li> <li>(A) proton and electron</li> <li>(B) proton and newtron</li> <li>(C) neutron and positron</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>(c) but (c) matching (c) production</li> <li>Experimental evidence indicates that the nucleus of an atom (A) contains most of the mass of the atom (B) contains a small percentage of the mass of the atom (C) has no charge (D) has a negative charge</li> <li>The atomic number of an atom is always equal to the total number of</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>(c) a proton (c) a network (c) a network (c) and (c)</li></ul> | <ul> <li>(D) electrons, but a different number of protons</li> <li>16. All the isotopes of a given atom have</li> <li>(A) the same mass number and the same atomic number</li> <li>(B) the same mass number but different atomic numbers</li> <li>(C) different mass numbers but the same atomic number</li> <li>(D) different mass numbers and different atomic number</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>(D) electron and positron</li> <li>19. Which statement concerning elements is true?</li> <li>(A) Different elements must have different number of isotopes.</li> <li>(B) Different elements must have different numbers of neutrons.</li> <li>(C) All atoms of a given clement must have the same mass number.</li> <li>(D) All atoms of a given element must have the same atomic number.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ul> <li>(A) neutrons in the nucleus</li> <li>(B) protons in the nucleus</li> <li>(C) neutrons plus protons in the atom</li> <li>(D) protons plus electrons in the atom</li> <li>4. An atom that contains 35 protons, 45 neutrons, and 35 electrons has an atomic number of</li> <li>(A) 35 (C) 80</li> <li>(B) 45 (D) 115</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ol> <li>The number of protons in an atom of <sup>3</sup>/<sub>4</sub>H is         <ul> <li>(A) 1</li> <li>(C) 3</li> <li>(B) 2</li> <li>(D) 4</li> </ul> </li> <li>The nucleus of an atom of <sup>5</sup>/<sub>2</sub>T<sup>2</sup> contains         <ul> <li>(A) 53 neutrons and 127 protons</li> <li>(B) 53 protons and 127 neutrons</li> <li>(C) 53 protons and 74 neutrons</li> <li>(D) 54 protons and 74 neutrons</li> </ul> </li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>17. If the nucleus of an atom is represented as <sup>2</sup>/<sub>17</sub>X, the atom is</li> <li>(A)Na</li> <li>(C)Mg</li> <li>(B) A1</li> <li>(D)Br</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20. The atomic mass of an element is defined as the<br>weighted average mass of that element's<br>(A) most shundani isotope<br>(B) least abundani isotope<br>(C) naturuly occurring isotopes<br>(D) radioactive isotopes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <ul> <li>5. Which atom has a nucleus that contains 13 protons and 14 neutrons?</li> <li>(A) Mg 'CC (A)</li> <li>(B) Be (D) N</li> <li>6. What is the total number of electrons in a neutral atom of Juorine?</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>(A) 19 protons and 21 neutrons</li> <li>(B) 19 protons and 42 neutrons</li> <li>(C) 20 protons and 42 neutrons</li> <li>(D) 23 protons and 19 neutrons</li> <li>(D) 23 protons and 19 neutrons</li> <li>14. An experiment in which alpha particles were</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <ul> <li>(A) 9 (C) 19</li> <li>(B) 10 (D) 28</li> <li>7. What is the mass number of an atom which contains 21 electrons, 21 protons, and 24 neutrons?</li> <li>(A) 21 (C) 45</li> <li>(B) 42 (D) 66</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | used to bomhard thin sheets of gold foil led to<br>the conclusion that an atom is composed mostly<br>of<br>(A) empty space and has a small, negatively<br>charged nucleus<br>(B) empty space and has a small, positively<br>charged nucleus<br>(C) a large, dense, positively charged nucleus<br>(D) a large, dense, positively charged nucleus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3. A base of the second sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Chemistry- Unit 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chemistry- Unit 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Chemistry- Unit 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chemistry- Unit 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Unit 2         Unit 3 -         1. What is the total number of occupied principal energy<br>levels in an atom of neon in the ground string and<br>levels in an atom of neon in the ground string and<br>levels in an atom of neon in the ground string<br>(A) 1 (C) 3<br>(B) 2 (O) 4         Vinite demonstration of the string atom of neon<br>principal energy level?<br>(A) N (C) As<br>(B) P (O) S5         3. The principal quantum number of the outermost electron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Electrons     Chemistry       9. Which atom in the ground state has three unpaired electrons in the subermost principal energy level?     (A) Li       (A) Li     (C) N       (B) B     (D) Ne       (B) B     (D) Ne       (C) Mit is the electron configuration of a neutral atom in the ground state with a total of six valence electrons?     (A) 112 <sup>2</sup> /22 <sup>2</sup> /21 <sup>4</sup> (B) 12 <sup>2</sup> /22 <sup>2</sup> /21 <sup>4</sup> (C) 12 <sup>2</sup> /22 <sup>2</sup> /21 <sup>4</sup> (D) 12 <sup>2</sup> /22 <sup>2</sup> /21 <sup>2</sup> /32 <sup>4</sup> /32 <sup>4</sup> /31 <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chemistry- Unit 2<br>17. Which electron transition represents the release of<br>energy?<br>(A) 1510 2p (C) 3p to 15<br>(B) 2s to 2p (D) 2p to 3s<br>18. Which orbital notation correctly represents the outermost<br>principal energy level of a nitrogen atom in the ground<br>state?<br>(A)<br>S<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ol> <li>During a flame test, lons of a specific metal are heated in<br/>the flame of a gas burner. A characteristic color of light is<br/>emitted by these ions in the flame when the electrons<br/>(A) gain energy as they return to lower energy levels<br/>(B) gain energy as they return to lower energy levels<br/>(C) emit energy as they return to lower energy levels<br/>(C) emit energy as they return to lower energy levels<br/>(C) emit energy as they return to lower energy levels</li> <li>(D) emit energy as they return to lower energy levels</li> <li>(D) emit energy as they return to lower energy levels</li> <li>(D) emit energy as they more to higher energy levels</li> <li>(D) emit energy as they more to higher energy levels</li> <li>(D) end energy levels (shells)</li> <li>(C) neutions in the muchans</li> </ol>                                                                                                                                                                   |
| Chemistry- Unit 2<br>1. What is the total number of occupied principal energy levels in an atom of neon in the ground state?<br>(A) 1 (C) 3<br>(B) 2 (D) 4<br>2. Which element has alons will notly one completely filled principal energy Yeve?<br>(A) N (C) As<br>(B) P (D) Sb<br>3. The principal quantum number of the outermost electron of an atom in the ground state is $n = 3$ . What is the total number of occupied principal energy levels contained in this atom?<br>(A) 7 (C) 3<br>(B) 2 (D) 4<br>4. As an electron in a hydrogen atom moves from the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Electrons       Chemistry         9. Which atom in the ground state has three unpaired electrons in its outernost principal energy level?       (A) Li       (C) N         (A) Li       (C) N       (B) B       (D) Ne         10. Which is the electron configuration of a neutral atom in the ground state with a total of six valence electrons?       (A) $132^{-2}2^{2}p^{4}$ (B) # $122^{-2}2p^{4}$ (D) Ne         11. Which principal energy level has a maximum of three sublevels?         (A) $132^{-2}2p^{4}$ (D) $14$ 12. What is the total number of valence electrons in an atom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chemistry- Unit 2<br>17. Which electron transition represents the release of<br>energy?<br>(A) 1s to 3p (C) 3p to 1s<br>(B) 2s 1o 2p (C) 2p to 3s<br>18. Which orbital notation correctly represents the outermost<br>state?<br>(A) $\frac{1}{100} \frac{1}{100} $ | <ol> <li>During a flame test, lons of a specific metal are heated in<br/>the flame of a gas burner. A characteristic color of light is<br/>emitted by these ions in the flame when the elections</li> <li>(A) gain energy as they thrun to lower energy levels</li> <li>(B) gain energy as they thrun to lower energy levels</li> <li>(C) emit energy as they move to higher energy levels</li> <li>(D) emit energy as they move to higher energy levels</li> <li>(D) emit energy as they move to higher energy levels</li> <li>(D) emit energy as they move to higher energy levels</li> <li>(D) emit energy as they move to higher energy levels</li> <li>(D) emit energy as they move to higher energy levels</li> <li>(D) emit energy as they move to higher energy levels</li> <li>(D) entit call calls all how the same number of<br/>the Period energy levels (shells)</li> <li>(E) energine energy levels (shells)</li> <li>(C) neutrons in the nucleus</li> <li>(C) electrons in the valance shell</li> </ol> |
| Chemistry- Unit 2<br>Unit 3<br>What is the total number of occupied principal energy<br>levels in an atom of neon in the ground state?<br>(A) 1 (C) 3<br>(B) 2 (D) 4<br>(A) N (C) As<br>(B) P (D) 55<br>(B) P (D) 55<br>(C) As<br>(B) P (D) 55<br>(C) As<br>(C) A | Electrons       Chemistry         9. Which atom in the ground state has three upgaled electrons in its outermost principal energy level?       (A) Li         (A) Li       (C) N         (B) B       (D) Ne         10. Which is the electron configuration of a neutral atom in the ground state with a total of six vience electrons?         (A) Li       (C) N         (B) B       (D) Ne         10. Which is the electron configuration of a neutral atom in the ground state with a total of six vience electrons?         (A) 122*22pt         (D) 122*22pt         (D) 122*22pt         (E) 122*22pt         (E) 122*22pt         (D) 122*22pt         (E) 122*22pt         (E) 122*22pt         (I) 12*22*2pt         (I) 12*22*2pt         (I) 12*22*2pt         (I) 12*22*2pt         (I) 12*22*2pt         (I) 12*22*2pt         (I) 12*2*2pt         (I) 12*2*2pt         (I) 12*2*2pt         (I) 2*0       (I) 14*10*10*10*10*10*10*10*10*10*10*10*10*10*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Chemistry- Unit 2<br>17. Which electron transition represents the release of<br>energy?<br>(A) Is to 3p (C) 3p to 1s<br>(B) 2s to 2p (D) 2p to 3s<br>18. Which orbital indison correctly represents the outermost<br>profession energy level of a nitrogen atom in the ground<br>state?<br>(A) $S$ $P$ $P$ $P$ $P$<br>(B) $S$ $P$ $P$ $P$ $P$ $P$<br>(C) $S$ $P$ $P$ $P$ $P$ $P$<br>(C) $S$ $P$ $P$ $P$ $P$ $P$ $P$<br>(C) $S$ $P$ $P$ $P$ $P$ $P$ $P$ $P$<br>(C) $S$ $P$ $P$ $P$ $P$ $P$ $P$ $P$<br>(C) $S$ $P$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ol> <li>During a finme test, lons of a specific metal are heated in<br/>termine of up as burner. A characterisfic color of light is<br/>emitted by these ions in the fame when the electrons<br/>(A) gain energy as they return to baser energy twels<br/>(B) gain energy as they return to baser energy twels<br/>(C) emit energy as they return to baser energy twels<br/>(C) emit energy as they return to baser energy twels<br/>(C) emit energy as they return to baser energy twels<br/>(C) emit energy as they return to baser energy twels<br/>(C) emit energy as they move to higher energy twels<br/>(C) emit energy as they move to higher energy twels<br/>(C) emit energy exits (shells)<br/>(C) networks in the ruleus<br/>(C) electrons in the ruleus<br/>(C) electrons in the ruleus</li> </ol>                                                                                                                                                                                                       |

Chemistry- Unit 3

What is the maximum number of electrons in the third shell of an atom?
 (A) 6 (C) 3
 (B) 9 (D) 18

7. Which electron configuration represents an atom in an excited state? (a)  $15^{2}2^{2}2^{2}p^{2}5p^{1}$ (b)  $15^{2}2^{2}2^{2}p^{4}3z^{3}p^{2}$ (c)  $1z^{2}2^{2}2p^{4}3z^{3}p^{2}$ (d)  $1z^{2}2z^{2}p^{4}3z^{3}z^{2}$ 

8. The total number of d orbitals in the third principal energy level is
(A) 1
(C) 3
(B) 5
(D) 7

DRAFT

36

nd state contains a partially filled

(C) potassium (D) aluminum

14. The maximum number of electrons that a single orbital of the 3d sublevel may contain is (A) 5 (C) 3 (B) 2 (D) 4

 15. Which element has a completely filled third principal energy level?

 (A) Ar
 (C) Fe

 (B) N
 (D) Zn

Which atom in the 3p orbital?
 (A) argon
 (B) celcium

Chemistry- Unit 3

DRAFT

| 1. The element in Period 2 with the largest atomic radius is<br>(A) a halogen (C) an alkali metal<br>(B) a noble gas (D) an alkaline earth meta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Unit 4 Periodic Table and Trends 8. The table below shows some properties of elements A, B , C, and D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ol> <li>When a sodium atom becomes an ion, the size of the<br/>atom</li> <li>(A) decreases by gaining an electron</li> <li>(B) decreases by losing an electron</li> <li>(C) increases by atomic an electron</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ol> <li>Which diagram correctly shows the relationship between<br/>electronegativity and atomic number for the elements of<br/>Period 37         <ul> <li>(A) A</li> <li>(A) A</li> </ul> </li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. Which sequence of atomic numbers represents element which have similar chemical properties?           (A) 19, 23, 30, 36         (C) 3, 12, 21, 40           (B) 9, 16, 33, 50         (D) 4, 20, 38, 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S Element Ionization Electronagativity element Esergio Ionization el la constanta de Electronagativity el element al de Electricity A Iow Iow Iow Iow Iow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (D) increases by losing an electron<br>15. Which element has an atomic radius that is greater than<br>its ionic radius?<br>(A) S (C) F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Electroned in the second secon |
| <ol> <li>All of the atoms of the elements in Period 2 have the<br/>same number of         <ul> <li>(A) protons</li> <li>(B) neutrons</li> <li>(C) valance electrons</li> </ul> </li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C high high tow<br>D high high high<br>Which element is most likely a nonmetal?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (B) K (D) O<br>16. Elements that readily gain electrons land to have<br>(A) high ionization energy and high electronegalivity<br>(B) high ionization energy and low electronegalivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (D) occupied energy levels (shells)<br>In which classification is an element placed if the<br>outermost 3 sublevels of its atoms have a ground state<br>electron configuration of 3p <sup>6</sup> 3d <sup>5</sup> 4s <sup>2</sup> ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (A) A (C) C<br>(B) B (D) D<br>9. Which of these metals loses electrons most readily?<br>(A) calcium (C) potassium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>(C) low ionization energy and tow electronegativity</li> <li>(D) low ionization energy and high electronegativity</li> <li>(T) Which element in Period 3 has the greatest tendency to<br/>gain electrons?</li> <li>(A) Lio</li> <li>(C) CI</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Abomic Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (A) alkaline earth metals     (C) metalloids (semimetals     (B) transition metals     (D) nonmetals     Low ionization energies are most characteristic of atoms that are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>(B) magnesium (D) sodium</li> <li>10. Which sequence correctly places the elements in order of increasing ionization energy?</li> <li>(A) H → Li → N<sup>ia</sup> → K (C) O → S → Se → Te</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (A) NB (D) CI<br>(B) Si (D) Ar<br>18. Which sequence of elements is arranged in order of<br>decreasing adomic radir?<br>(A) A SI, P (C) CI Br 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Betranda they                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (H) Intellines (D) Intellinous<br>(B) nonmetals (D) noble gases<br>in a given period of the Periodic Table, the element with<br>the lowest first ionization energy is always in<br>(A) Grown 1 (C) Grown 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (B) 1→ B1→ C1→ F (U) H→ B0→ A1→ Ga<br>11. Which of the following particles has the smellest radius?<br>(A) Na <sup>6</sup><br>(B) K <sup>6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (B) U, Na, K (D) N, C, B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Atomic Number ►                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (B) Group 2 (D) Group 18<br>(B) Group 2 (D) Group 18<br>As the atoms of the elements in Group 1 are considered<br>in order from top to bottom, compared to the ionization<br>energy of the atom above it, the ionization energy of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (C) Na <sup>+</sup><br>(D) K <sup>+</sup><br>12. Which atom has the strongest attraction for electrons?<br>(A) C1 (C) Br<br>(C) C (C) Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | and a second sec | Atomic Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| each successive atom<br>(A) decreases (C) remains the same<br>(B) increases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (c) F (c)                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20. Within Period 2 of the Periodic Table, as the atomic<br>number increases, the atomic radius generally<br>(A) decreases (C) remains the same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (A) neutrons in the nucleus<br>(B) electrons in the outermost shell<br>(C) unpaied electrons<br>(D) principal energy levels (shells)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | an dari<br>ang dari ang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (B) increases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Iry- Unit 4 DRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FT 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Chemistry- Unit 4 DRAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FT 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| try- Unit 4 DRA<br>Which formula represents an jonic compound?<br>A)NaCl (C) HCl<br>B)N <sub>2</sub> O (D)H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FT 19<br><u>Init 5 Bonding</u><br>10. Element <i>M</i> is a metal and its chloride has the formula <i>M</i> Cl <sub>2</sub> . To which group of the Periodic Table does element <i>M</i> most likely belong?<br>(A) 1 (C) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chemistry- Unit 4 DRAF<br>19. When a potassium atom reacts with bromine, the<br>potassium atom will<br>(A)lose only 1 electron<br>(B) lose 2 electrons (D) gain 2 electrons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T 20<br>20. What is the formula of nitrogen (D) oxide?<br>(A)NO (C)N <sub>2</sub> O<br>(B)NO <sub>2</sub> (D)N <sub>4</sub> O <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| try- Unit 4 DRA<br>Which formula represents an ionic compound?<br>(A)NaCl (C)HCl<br>B)N <sub>2</sub> O (D)H <sub>2</sub> O<br>Which formula correctly represents the<br>compound calcium hydroxide?<br>A)CaOH (C)CaOH <sub>2</sub><br>B)Ca <sub>2</sub> OH (D)Ca(OH) <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FT 19<br>Unit 5 Bonding<br>10. Element <i>M</i> is a metal and its chloride has the<br>formula <i>A</i> ( <i>U</i> , To which group of the Periodic<br>Table does element <i>M</i> most likely belong?<br>(A)1 (C) 15<br>(B)2 (D)17<br>11. What is the correct name of the compound with<br>the formula NH <sub>4</sub> NO <sub>2</sub> ?<br>(A)amonia hitria (C) amonia nitrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chemistry- Unit 4 DRAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ET 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Iny- Unit 4 DRA<br>Which formula represents an ionic compound?<br>A)NeCl (C)HCl<br>B)N <sub>2</sub> O (D)H <sub>2</sub> O<br>Which formula correctly represents the<br>ompound calcium hydroxide?<br>A)CaOH (C)CaOH <sub>2</sub><br>Which metal will form a compound with the<br>eneral formula M <sub>2</sub> CO <sub>2</sub> when it combines with<br>carbonate ion?<br>A)Derp(ilium (C) calcium<br>B)duminum (D)lithium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FT 19<br>Unit 5 Bonding<br>10. Element <i>M</i> is a metal and its chloride has the<br>formula <i>A</i> (C). To which group of the Periodic<br>Table does element <i>M</i> most likely belong?<br>(A) 1 (C) 15<br>(B) 2 (D) 17<br>11. What is the correct name of the compound with<br>the formula NR <sub>1</sub> NO <sub>2</sub> ?<br>(A) annoniun nitrite (C) annonia nitrate<br>(B) annoniun nitrite (C) annonia nitrate<br>(B) annoniun nitrite (C) Ns Br<br>(A)Nis, Br (C) Ns Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Chemistry- Unit 4 DRAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FT 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| try- Unit 4 DRA<br>Which formula represents an ionic compound?<br>A)NeCl (C)HCl<br>B)N <sub>2</sub> O (D)H <sub>2</sub> O<br>Which formula correctly represents the<br>ompound ealcium hydroxide?<br>A)CaOH (D)Ca(OH <sub>2</sub> )<br>Vhich metal will form a compound with the<br>eneral formula M <sub>2</sub> CO <sub>2</sub> when it combines with<br>carbonate ion?<br>A)Deryllium (C) calcium<br>B) aluminum (D) Hithum<br>Which is the formula for magnesium sulfide?<br>A)MgS (C) MnS<br>B)MgSO <sub>3</sub> (D)MnSO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FT       19         Unit 5       Bonding         10. Element M is a metal and its chloride has the formula ACL, To which group of the Periodic Table does element M most likely belong? <ul> <li>(A) 1</li> <li>(C) 15</li> <li>(B) 2</li> <li>(D) 17</li> </ul> 11. What is the correct name of the compound with the formula NR, NO, ?           (A) amonium nitrite           (D) ammonium nitrite           (A) The chemical formula for nickel (I) bromide is           (A)Ni, Br         (C) Na, Br           (A) NiBry         (D) NBry           13. Atoms of metals tend to         (A) lose electrons and form negative ions         (D) lose electrons and form negative ions         (D) lose cleaters and form negative ions         (D) lose cleaters and form negative ions         (D) lose cleaters and form negative ions <ld>(D) lose cleaters and form negative ions         <ld>(D) lose cleaters and form negative ions         <ld>(D) lose cleaters and form negative ions         <ld>(D) lose cleaters and form negative ions         <ld>(D) lose cleaters and form negative ions         <ld>(D) lose cleaters and form negative ions</ld></ld></ld></ld></ld></ld>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Chemistry- Unit 4 DRAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FT 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| try- Unit 4     DRA       Which formula represents an ionic compound?       A)NeC     (C)HC       B)N <sub>2</sub> O     (D)H <sub>2</sub> O       Which formula correctly represents the compound ealcium hydroxide?       A)CaOH     (D)Ca(OH),       B)CayOH     (D)Ca(OH),       Which metal will form a compound with the eneral formula M <sub>2</sub> CO <sub>2</sub> when it combines with carbonate ion?       A)Deryllham     (C) calclum,       B) aluminum     (D) lithium       Which is the formula for magnesium sulfide?       A)MgS     (D) MnSO,       ince correct formula for calcium phosphate is a)Ca(PO),       B)CayOQ,     (D)Ca(PO),       What is the correct name of Fe <sub>2</sub> O <sub>2</sub> ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FT       19         Unit 5       Bonding         10. Element M is a metal and its chloride has the formula ACL, To which group of the Periodic Table does element M most likely belong? <ul> <li>(A) 1</li> <li>(C) 15</li> <li>(B) 2</li> <li>(D) 17</li> </ul> <li>11. What is the correct name of the compound with the formula NRINO?;         <ul> <li>(A) 1</li> <li>(C) 15</li> <li>(B) 2</li> <li>(D) 17</li> </ul> </li> <li>13. What is the correct name of the compound with the formula for nickel (D) bromide is             <ul> <li>(A) Ni<sub>2</sub>Br</li> <li>(D) NBr<sub>5</sub></li> </ul> </li> <li>14. Atoms of metals form logative ions         <ul> <li>(B) lose electrons and form negative ions</li> <li>(D) logat electrons and form negative ions</li> <li>(D) gain electrons and form negative ions</li> <li>(D) gain electrons and form negative ions</li> <li>(D) gain electrons and form negative ions</li> <li>(D) spate negative nodes with phosphorus?</li> <li>(A) Which is the formula for the compound that forms when magnesium bonds with phosphorus?</li> <li>(A) Mage<sup>2</sup></li> <li>(A) Mage<sup>2</sup></li> <li>(A) Mage<sup>2</sup></li> <li>(A) Mage<sup>2</sup></li> <li>(B) Mage<sup>2</sup></li> <li>(A) Mage<sup>2</sup></li> <li>(A) Mage<sup>2</sup></li> </ul> </li>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chemistry- Unit 4 DRAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20. What is the formula of nitrogen (Π) oxide?       (Δ)NO2     (C)N3O       (B)NO2     (D)N3O4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| try- Unit 4 DRA<br>Which formula represents an ionic compound?<br>A)NeCl (C)HCl<br>B)N <sub>2</sub> O (D)H <sub>2</sub> O<br>Which formula correctly represents the<br>compound calcium hydroxide?<br>A)CaOH (C) CaOH <sub>2</sub><br>B)CaOH (C) CaOH <sub>2</sub><br>B)CaOH (C) CaOH <sub>2</sub><br>B)CaOH (C) CaOH <sub>2</sub><br>B)CaOH (D)Ca(C)H <sub>3</sub> CO<br>Which metal will form a compound with the<br>eneral formula M <sub>2</sub> CO <sub>3</sub> when it combines with<br>carbonate ion?<br>A)Deryllium (C) calcium<br>B) aluminum (D) lithium<br>Which is the formula for magnesium suffate?<br>A)MgSO (D) MnSO <sub>3</sub><br>The correct formula for calcium phosphate is<br>A)Ca <sub>2</sub> O <sub>4</sub> O <sub>2</sub> , (C) Ca <sub>3</sub> P <sub>2</sub><br>B)Ca <sub>3</sub> O(C <sub>3</sub> ), (D)Ca <sub>3</sub> P(O <sub>2</sub> ),<br>What is the correct name of F <sub>2</sub> O <sub>3</sub> ?<br>A)tron (I) oxide (C) iron (II) oxide<br>B) iron (II) oxide (C) iron (II) oxide<br>b) iron (II) oxide (C) iron (III) oxide<br>b) iron (I) oxide (C) iron (III) oxide (C) iron (III) oxide<br>b) iron (I) oxide (C | FT       19         Unit 5       Bonding         10. Element M is a metal and its chloride has the formula A/CL, To which group of the Periodic Table does element M most likely belong? <ul> <li>(A) I</li> <li>(C) 15</li> <li>(B) 2</li> <li>(D) 17</li> <li>(A) Matti si the correct name of the compound with the formula NN_1NO<sub>2</sub>?       <ul> <li>(A) C, To which group of the Periodic Table does element M most likely belong?</li> <li>(A) I</li> <li>(C) 15</li> <li>(B) 2</li> <li>(D) 17</li> </ul> </li> <li>11. What is the correct name of the compound with the formula NN_1NO<sub>2</sub>?       <ul> <li>(A) ammonia nitrite</li> <li>(D) sammonia nitrate</li> <li>(B) annonium nitrite</li> <li>(D) Sharp</li> <li>(D) NBF<sub>3</sub></li> <li>(D) Sharp megative ions</li> <li>(D) gain electrons and form negative ions</li> <li>(D) gain electrons and form negative ions</li> <li>(D) gain electrons and form negative ions</li> <li>(D) MgP<sub>2</sub></li> <li>(D) MgP<sub>2</sub></li> <li>(D) MgP<sub>2</sub></li> <li>(D) MgP<sub>2</sub></li> <li>(D) MgP<sub>2</sub></li> <li>(D) MgP<sub>3</sub></li> <li>(D) MgP<sub>3</sub><td>Chemistry-Unit 4         DRAF           19. When a potassium atom reacts with bromine, the potassium atom will<br/>(A)lose only 1 electron (C) gain only 1 electron<br/>(B) lose 2 electrons (D) gain 2 electrons</td><td>= T 20</td></li></ul></li></ul> | Chemistry-Unit 4         DRAF           19. When a potassium atom reacts with bromine, the potassium atom will<br>(A)lose only 1 electron (C) gain only 1 electron<br>(B) lose 2 electrons (D) gain 2 electrons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = T 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| try- Unit 4 DRA<br>Which formula represents an ionic compound?<br>A)NaCl (C)HCl<br>B)N <sub>2</sub> O (D)H <sub>2</sub> O<br>Which formula correctly represents the<br>compound calcium hydroxide?<br>A)CaOH (C)CaOH <sub>2</sub><br>Mich metal will form a compound with the<br>general formula M <sub>2</sub> CO <sub>2</sub> when it combines with<br>emborate ion?<br>A)MgSO (D)HfMum<br>B)aluminum (D)HtMum<br>Which is the formula for magnesium suffict?<br>A)MgSO (D)MgSO <sub>3</sub><br>The correct formula for calcium phosphate is<br>A)Ca <sub>2</sub> OP <sub>4</sub> (C)Ca <sub>2</sub> P <sub>2</sub> -<br>B)Ca <sub>2</sub> OP <sub>4</sub> (C)Ca <sub>2</sub> P <sub>2</sub> -<br>B)Ca <sub>2</sub> OP <sub>4</sub> (C)Ca <sub>3</sub> P <sub>2</sub> O <sub>4</sub><br>What is the formula for calcium phosphate is<br>A)Ca <sub>2</sub> O <sub>4</sub> (C)Ca <sub>3</sub> P <sub>2</sub> -<br>B)Ca <sub>2</sub> OP <sub>4</sub> (C)Ca <sub>3</sub> P <sub>2</sub> O <sub>4</sub><br>(D)Iron (I) oxide (C) iron (II) oxide<br>B)inon (II) oxide? (D)Iron (V) oxide<br>B)NaSO <sub>3</sub> (D)Na <sub>5</sub> SO <sub>3</sub><br>Vhich formula correct prepresents the<br>omposition of iron (III) oxide?<br>A)FeO <sub>4</sub> (C) Fe <sub>5</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FT       19         Init 5       Bonding         10. Element M is a metal and its chloride has the formula MCL, To which group of the Periodic Table does element M most likely belong?       (A) 1         (A) 1       (C) 15         (B) 2       (D) 17         11. What is the correct name of the compound with the formula NH_NO_2;       (A) ammonia nitrite         (B) ammonia nitrite       (C) ammonia nitrate         (B) marmonia nitrite       (C) Marmonia nitrate         (B) marmonian nitrite       (C) N_BBr         (B) NiBr_2       (D) NBr_5         13. Atoms of metals for nickel (D) bromide is       (A) Nig.Pr         (D) gain electrons and form negative ions       (D) gain electrons and form positive ions         (D) gain electrons and form positive ions       (D) gain electrons and form positive ions         (D) which is the formula for the compound that forms when magnesium bonds with phosphorus?       (A) Mg.Pr         (A) Mig.Pr       (C) Mag.Pr         (B) Mide 2       (D) MCI         (B) LiCl       (D) KCl         13. Atoms of norm for the compound that forms when magnesium bonds with phosphorus?         (A) Mig.Pr       (C) Mag.Pr         (B) Mide 2       (D) McI:         (D) LiCl       (D) KCl         14. Atoms of norm for NO, 5 is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Chemistry-Unit 4         DRAF           19. When a potassium atom reacts with bromine, the potassium atom will<br>(A)Ose only 1 electron (C) gain only 1 electron<br>(B)Ose 2 electrons (D) gain 2 electrons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20. What is the formula of nitrogen (Π) oxide?       (A) NO     (C) N,O       (B) NO <sub>2</sub> (D) N,O,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| try- Unit 4 DRA<br>Which formula represents an ionic compound?<br>A)NaCl (C)HCl<br>B)N <sub>2</sub> O (D)H <sub>2</sub> O<br>Which formula correctly represents the<br>compound ealcium hydroxide?<br>A)CaOH (C)CaOH <sub>2</sub><br>Which formula will form a compound with the<br>eneral formula $A_{CO}$ (Marking)<br>B)CaOH (C)CaOH <sub>2</sub><br>Which netal will form a compound with the<br>eneral formula $A_{CO}$ (Marking)<br>B)CaOH (C)CaOH <sub>2</sub><br>Which netal will form a compound with the<br>eneral formula $A_{CO}$ (C) CaOH <sub>2</sub><br>B)CaOH (C)CaOH <sub>2</sub><br>Which netal will form a compound with the<br>eneral formula $A_{CO}$ (C) CaOH <sub>2</sub><br>B)Ca <sub>2</sub> OH (C)CaOH <sub>2</sub><br>Which is the formula for magnesium sulfide?<br>A)MgS (C) MarSO <sub>3</sub><br>The correct formula for calcium phoses is<br>A)CaPO <sub>4</sub> (C)Ca <sub>2</sub> S <sub>2</sub><br>B)Ca <sub>2</sub> (PO <sub>4</sub> ) (D)Ca <sub>3</sub> (PO <sub>4</sub> ).<br>What is the correct name of Fe <sub>2</sub> O <sub>3</sub> ?<br>A)Iron (I) oxide (C) Iron (II) oxide<br>B)Iron (I) oxide (C) Iron (II) oxide<br>Which formula correctly represents the<br>supposition of iron (III) oxide?<br>A)IFeO <sub>3</sub> (C) Fe <sub>5</sub> O <sub>3</sub><br>Which formula correctly represents the<br>supposition of iron (III) oxide?<br>A)FeO <sub>3</sub> (D) Fe <sub>5</sub> O <sub>3</sub><br>When the the correct and the formula the formula formed by <i>M</i> and<br>xween?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FT     19       10. Element M is a metal and its chloride has the formula A/Ci, To which group of the Periodic Table does element M most likely belong?     (A) [0] (C) 15       10. Blement M is a metal and its chloride has the formula A/Ci, To which group of the Periodic Table does element M most likely belong?     (A) [0] (C) 15       10. Mini is the correct name of the compound with the formula NI_NO_?     (A) [0] (C) 15       11. What is the correct name of the compound with the formula NI_NO_?     (A) ammonia nitrite       (B) ammonia nitrite     (C) ammonia nitrate       (B) ammonium nitrite     (D) ammonium nitrate       12. The chemical formula for nickel (ID) bromide is     (A) Nis.Br       (A) lose electrons and form negative ions     (D) gain electrons and form positive ions       (D) gain electrons and form positive ions     (D) gain electrons and form positive ions       13. Which is the formula for the compound that forms when magnesium bonds with phosphorus?     (A) Mig.P_2       (A) HG (C) N&CI     (D) McG.P_2       13. Which is the formula for the compound that forms when magnesium bonds with phosphorus?     (A) Mig.P_2       (A) HG (C) N&CI     (D) KCI       14. A corect name for N <sub>i</sub> O <sub>2</sub> is     (A) Introgen (I) oxide       (A) Nitrogen (I) oxide     (D) nitrogen (IV) oxide       13. Which of the following is the correct formula for nitric exit?     (A) HNO, (C) HF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chemistry-Unit 4         DRAF           1.         When a potassium atom reacts with bromine, the potassium atom will.<br>(A)lose only 1 electron (C) gain only 1 electron<br>(B)lose 2 electrons (D) gain 2 electrons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20. What is the formula of nitrogen (Π) oxide?       (Δ) NO     (C) N,O       (B) NO     (D) N,O,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Chemistry- Unit 5

DRAFT

24

Chemistry- Unit 5

DRAFT

| 1. The bonds between hydrogen and oxygen in a water molecule are classified as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8. Which type of molecule is CF <sub>4</sub> ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | molecule?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (A) trigonal planar (C) big bent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (A) polar covalent (C) ionic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (A) polar, with a symmetrical distribution of<br>charge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H-CI (C)<br>(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (B) trigonal pyramidal (D) linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (B) nonpolar covalent (D) metallic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (B) polar, with an asymmetrical distribution of<br>charge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н-О Н-М-Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>(A) trigonal planar</li> <li>(C) big bent</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2. Which molecule is nonpolar?<br>(A)H <sub>2</sub> O (C)CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (C) nonpolar, with a symmetrical distribution of<br>charge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (B) trigonal pyramidal (D) linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (B)NH <sub>3</sub> (D)CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (D) nonpolar, with an asymmetrical distribution<br>of charge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (b)<br>(D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19. Which compound contains only covalent bonds?<br>(A)NaOH (C) Ca(OH),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <ol><li>Which of these substances has the strongest<br/>intermolecular forces?</li></ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9. The shape of a molecule of BF, is said to be:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16. Which electron-dot structure is correct for SiO <sub>2</sub> ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (B) Ba(OH) <sub>2</sub> (D) CH <sub>3</sub> OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (A)H <sub>2</sub> O (C)H <sub>2</sub> Sc<br>(B)H S (D)H Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (A) trigonal planar (C) big bent<br>(B) trigonal pyramidal (D) linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OTSP:O Sf O<br>(A) (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ol> <li>When phosphorus and chlorine atoms combine<br/>to form a molecule of PCI., 6 electrons will form</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (b) $\Pi_2$ (b) $\Pi_2$ (c) (                                                                                                            | 10. Which compound has molecules that form the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | O!!!S!!!O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (A) nonpolar covalent bonds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <ol> <li>which electron-dot structure represents a non-<br/>polar molecule?</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | strongest hydrogen bonds?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (B) H:O:<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (C) ionic bonds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| н:о: н:й:н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (B) HBr (D) HCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (D) nyarogen bonas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (A) H<br>(C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11. Which of the following compounds has the highest helling point?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n and a second secon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (A) $H_2O$ (C) $H_2Se$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| н:ё:н н.о.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (B) $H_2S$ (D) $H_2Te$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| H (D)<br>(B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ol> <li>Which pair of characteristics describes the<br/>molecule illustrated below?</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| e or a state of the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | fering and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | a and a second secon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ol><li>Which molecule contains a triple covalent bond<br/>between its atoms?</li></ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H and the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $ \begin{array}{c} (A)N_2 \\ (B)Q_2 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (A)symmetrical and polar<br>(B)symmetrical and nonpolar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $(D)O_2$ $(D)II_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (C) asymmetrical and polar<br>(D) asymmetrical and nonpolar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ol> <li>A diamond is an example of<br/>(A) a supercooled liquid (C) a metallic substance</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13 Which molecule has an asymmetrical shape?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | an balan sana karang sa sana na karang sana sana karang sana sana sana sana sana sana sana s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (B) an ionic compound (D) a network solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $(A)N_2 	(C)Cl_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ol> <li>In which liquid is hydrogen bonding strongest?</li> <li>(A) HF(0</li> <li>(C) CH (0</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (B) NH <sub>3</sub> (D) CCl <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (B) $H_2(t)$ (D) $NH_3(t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14. The shape of a molecule of BF <sub>3</sub> is said to be:<br>(A) trigonal planar (C) big bent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (B) trigonal pyramidal (D) linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RAFT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AFT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RAFT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AFT<br>18. What is the total number of nitrogen atoms in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| I. What is the total number of moles of atoms resent in 1 oram formula name of BVC NOV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RAFT Unit 7 Mole 9. The empirical formula of a compound is CH <sub>3</sub> , The molecular formula of this compound cauld                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DR<br>16. Which sample contains a total of 9.0 × 10 <sup>23</sup><br>atoms <sup>2</sup><br>(A10 50 mole of H( <sup>2</sup> ) (C) 15 moles of Cy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AFT<br>18. What is the total number of nitrogen atoms in<br>0.25 mole of NO <sub>2</sub> gas?<br>(A)1.5 × 10 <sup>23</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| I. What is the total number of moles of atoms present in 1 gram formula mass of Pb(C2H3O2)/(A)9 (C)3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P. The empirical formula of this compound is CH <sub>3</sub> .<br>The molecular formula of this compound could be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DR<br>16. Which sample contains a total of 9.0 × 10 <sup>23</sup><br>atoms <sup>2</sup><br>(A)0.65 mole of HCI (C) 1.5 moles of Cu<br>(B)0.75 mole of H <sub>2</sub> O (D)1.5 moles of H <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>AFT</li> <li>18. What is the total number of nitrogen atoms in 0.25 mole of NO<sub>2</sub> gas?</li> <li>(A)1.5 × 10<sup>21</sup></li> <li>(B) 6.0 × 10<sup>23</sup></li> <li>(C) 0.0 × 10<sup>23</sup></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| I. What is the total number of moles of atoms present in 1 gram formula mass of Pb(C2H3O2);       (A) 9       (D) 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Unit 7     Mole       9. The empirical formula of a compound is CH <sub>3</sub> .<br>The molecular formula of this compound could<br>be<br>(A) CH <sub>4</sub> (C) C <sub>2</sub> H <sub>6</sub><br>(B) C <sub>2</sub> H <sub>4</sub> (D) C <sub>3</sub> H <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ol> <li>Which sample contains a total of 9.0 × 10<sup>23</sup> atoms?</li> <li>(A) 0.50 mole of HC1 (C) 1.5 moles of Cu (B) 0.75 mole of H<sub>2</sub>O (D) 1.5 moles of H<sub>2</sub></li> <li>What is the total number of atoms contained in a substitution of the substitution of the</li></ol> | <ul> <li>AFT</li> <li>18. What is the total number of nitrogen atoms in 0.25 mole of NO<sub>2</sub> gas?</li> <li>(A) 1.5 × 10<sup>23</sup></li> <li>(B) 6.0 × 10<sup>23</sup></li> <li>(C) 3.0 × 10<sup>23</sup></li> <li>(D) 1.2 × 10<sup>24</sup></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| I. What is the total number of moles of atoms present in 1 gram formula mass of Pb(C2H3O2);         (A)9       (C)3         (B) 14       (D) 15         2. The gram formula mass of NH2Cl is (A)22.4 g/mole       (C) 53.5 g/mole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unit 7     Mole       9. The empirical formula of a compound is CH3.<br>The molecular formula of this compound could<br>be<br>(A)CH4, (C) C2H4,<br>(B) C2H4, (D)C3H6.       10. What is the empirical formula of a compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>16. Which sample contains a total of 9.0 × 10<sup>23</sup> atoms?</li> <li>(A)0.60 mole of HC1 (C) 1.5 moles of Cu (B)0.75 mole of H<sub>2</sub>O (D) 1.5 moles of H<sub>2</sub></li> <li>17. What is the total number of atoms contained in a 1.00-mole sample of helium?</li> <li>(A)1.00 atom</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ol> <li>What is the total number of nitrogen atoms in 0.25 mole of NO<sub>2</sub> gas?</li> <li>(A) 1.5 × 10<sup>23</sup></li> <li>(B) 6.0 × 10<sup>23</sup></li> <li>(C) 3.0 × 10<sup>23</sup></li> <li>(D) 1.2 × 10<sup>24</sup></li> <li>The volume occupied by 9.03 × 10<sup>23</sup> molecules</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1. What is the total number of moles of atoms present in 1 gram formula mass of Pb(C_H,O_b);         (A)9       (C)3         (B)14       (D)15         2. The gram formula mass of NH_Cl is       (A)22.4 g/mole         (B)28.0 g/mole       (D)95.5 g/mole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Unit 7     Mole       9. The empirical formula of a compound is CH3.<br>The molecular formula of this compound could<br>be<br>(A)C(H4 (C) C2H4,<br>(B) C2H4 (D) C3H6.       10. What is the empirical formula of a compound<br>that contains 30.4% nitrogen and 69.6% oxygen<br>by mas?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>Which sample contains a total of 9.0 × 10<sup>23</sup> atoms?</li> <li>(A)0.60 mole of HC1 (C) 1.5 moles of Cu (B) 0.75 mole of H<sub>2</sub>O (D) 1.5 moles of H<sub>2</sub></li> <li>17. What is the total number of atoms contained in a 1.00-mole sample of helium?</li> <li>(A)1.00 atom</li> <li>(B) 2.00 atoms</li> <li>(C) 1.20 × 10<sup>44</sup> atoms</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>AFT</b><br>18. What is the total number of nitrogen atoms in<br>0.25 mole of NO <sub>2</sub> gas?<br>(A) $1.5 \times 10^{23}$<br>(B) $6.0 \times 10^{23}$<br>(C) $3.0 \times 10^{21}$<br>(D) $1.2 \times 10^{24}$<br>19. The volume occupied by $9.03 \times 10^{23}$ molecules<br>of N <sub>2</sub> gas at STP is closest to<br>(A) 0.500 liter (C) 22.4 liters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ol> <li>What is the total number of moles of atoms present in 1 gram formula mass of Pb(C<sub>2</sub>H<sub>2</sub>O<sub>2</sub>)/(A)9 (C)3 (B) 14 (D) 15</li> <li>The gram formula mass of NF<sub>4</sub>C1 is (A)22.4 g/mole (C) 53.5 g/mole (B)28.0 g/mole (C) 995.5 g/mole</li> <li>The gram-formula mass of (NH<sub>4</sub>)<sub>4</sub>CO<sub>2</sub> is (A)46.0 g (C) 28.0 g/mole</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Vinit 7     Mole       9. The empirical formula of a compound is CH <sub>3</sub> .<br>The molecular formula of this compound could<br>be<br>(A) CH <sub>4</sub> (C) C <sub>2</sub> H <sub>6</sub> .<br>(B) C <sub>2</sub> H <sub>4</sub> (D) C <sub>3</sub> H <sub>6</sub> .       10. What is the empirical formula of a compound<br>that contains 30.4% nitrogen and 69.6% oxygen<br>by mas?<br>(A) NO (C) N <sub>2</sub> O <sub>3</sub> .<br>(B) NO <sub>5</sub> (D) N <sub>2</sub> O <sub>5</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>16. Which sample contains a total of 9.0 × 10<sup>23</sup> atoms?</li> <li>(A) 0.50 mole of HC1 (C) 1.5 moles of Cu (B) 0.75 mole of H<sub>2</sub>O (D) 1.5 moles of H<sub>2</sub></li> <li>17. What is the total number of atoms contained in a 1.00-mole sample of helium?</li> <li>(A) 1.00 atom (B) 2.00 atoms</li> <li>(C) 1.20 × 10<sup>24</sup> atoms</li> <li>(D) 6.02 × 10<sup>129</sup> atoms</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>AFT</li> <li>18. What is the total number of nitrogen atoms in 0.25 mole of NO<sub>2</sub> gas? <ul> <li>(A) 1.5 × 10<sup>33</sup></li> <li>(B) 6.0 × 10<sup>23</sup></li> <li>(C) 3.0 × 10<sup>23</sup></li> <li>(D) 1.2 × 10<sup>24</sup></li> </ul> </li> <li>19. The volume occupied by 9.03 × 10<sup>23</sup> molecules of N<sub>6</sub> gas at SP is closest to <ul> <li>(A) 0.500 liter</li> <li>(C) 2.2.4 liters</li> <li>(B) 1.50 liters</li> <li>(D) 33.6 liters</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>Differentiation of the total number of moles of atoms present in 1 gram formula mass of Pb(C<sub>2</sub>H<sub>2</sub>O<sub>2</sub>)/(A)9 (C)3 (B) 14 (D) 15</li> <li>The gram formula mass of NH<sub>2</sub>C is (A)22.4 g/mole (C) 53.5 g/mole (B)28.0 g/mole (C) 195.5 g/mole</li> <li>The gram-formula mass of (NH<sub>2</sub>CO<sub>2</sub> is (A)46.0 g (C) 78.0 g (B)64.0 g (D) 96.0 g</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mole       9. The empirical formula of a compound is CH <sub>3</sub> .<br>The molecular formula of this compound could<br>be<br>(A) CH <sub>4</sub> (C) C <sub>2</sub> H <sub>6</sub><br>(B) C <sub>2</sub> H <sub>4</sub> (D) C <sub>3</sub> H <sub>6</sub> 10. What is the empirical formula of a compound<br>that contains 30.4% nitrogen and 69.6% oxygen<br>by mass?<br>(A) NO (C) N <sub>2</sub> O <sub>3</sub><br>(B) NO <sub>2</sub> (D) N <sub>3</sub> O <sub>5</sub> 11. A compound consists of 25.9% nitrogen and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DR<br>16. Which sample contains a total of 9.0 × 10 <sup>23</sup><br>atoms <sup>2</sup><br>(A)0.50 mole of HC1 (C) 1.5 moles of Cu<br>(B)0.75 mole of H <sub>2</sub> O (D) 1.5 moles of H <sub>2</sub><br>17. What is the total number of atoms contained in a<br>1.00-mole sample of belium?<br>(A)1.00 atom<br>(B) 2.00 atoms<br>(C) 1.20 × 10 <sup>24</sup> atoms<br>(D)6.02 × 10 <sup>23</sup> atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>AFT</li> <li>18. What is the total number of nitrogen atoms in 0.25 mole of NO<sub>2</sub> gas? <ul> <li>(A)1.5 × 10<sup>33</sup></li> <li>(B) 6.0 × 10<sup>33</sup></li> <li>(C) 3.0 × 10<sup>33</sup></li> <li>(D) 1.2 × 10<sup>34</sup></li> </ul> </li> <li>19. The volume occupied by 9.03 × 10<sup>33</sup> molecules of N<sub>2</sub> gas at SP is closest to <ul> <li>(A) 0.500 liter</li> <li>(C) 22.4 liters</li> <li>(B) 1.50 liters</li> <li>(D) 33.6 liters</li> </ul> </li> <li>20. The total number of molecules in 34.0 grams of NH, is equal to</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ol> <li>What is the total number of moles of atoms present in 1 gram formula mass of Pb(C<sub>2</sub>H<sub>2</sub>O<sub>2</sub>)/(A)9 (C)3 (B)14 (D)15</li> <li>The gram formula mass of NH<sub>4</sub>Cl is (A)22.4 g/mole (C)53.5 g/mole (B)28.0 g/mole (D)95.5 g/mole</li> <li>The gram-formula mass of (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> is (A)46.0 g (C)78.0 g (B)64.0 g (D)96.0 g</li> <li>Which substance has the greatest molecular</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>EXAMPS</b><br><b>Unit 7 Mole</b><br>9. The empirical formula of a compound is $CH_3$ .<br>The molecular formula of this compound could<br>be<br>(A) $CH_4$ (C) $C_2H_6$<br>(B) $C_2H_4$ (D) $C_3H_6$<br>10. What is the empirical formula of a compound<br>that contains 30.4% nitrogen and 69.6% oxygen<br>by mass?<br>(A) NO (C) N <sub>2</sub> O <sub>3</sub><br>(B) NO <sub>2</sub> (D) N <sub>2</sub> O <sub>3</sub><br>11. A compound consists of 25.9% nitrogen and<br>74.1% oxygen by mass. What is the empirical<br>formula of the compound?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>I6. Which sample contains a total of 9.0 × 10<sup>23</sup> atoms?</li> <li>(A) 0.50 mole of HC1 (C) 1.5 moles of Cu (B) 0.75 mole of H<sub>2</sub> O (D) 1.5 moles of H<sub>2</sub></li> <li>17. What is the total number of atoms contained in a 1.00-mole sample of helium?</li> <li>(A) 1.00 atom (B) 2.00 atoms</li> <li>(C) 1.20 × 10<sup>24</sup> atoms</li> <li>(D) 6.02 × 10<sup>23</sup> atoms</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AFT<br>18. What is the total number of nitrogen atoms in<br>0.25 mole of NO <sub>2</sub> gas?<br>(A) 1.5 × 10 <sup>23</sup><br>(B) 6.0 × 10 <sup>23</sup><br>(C) 3.0 × 10 <sup>23</sup><br>(C) 3.0 × 10 <sup>23</sup><br>(C) 1.2 × 10 <sup>24</sup><br>19. The volume occupied by 9.03 × 10 <sup>23</sup> molecules<br>of N <sub>2</sub> gas at STP is closest to<br>(A) 0.500 liter (C) 22.4 liters<br>(B) 1.50 liters (D) 33.6 liters<br>20. The total number of molecules in 34.0 grams of<br>NH <sub>3</sub> is equal to<br>(A) 1.00 × 22.4 ,<br>(B) 2.00 × 22.4 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <ul> <li>I. What is the total number of moles of atoms present in 1 gram formula mass of Pb(C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>)/(A)9 (C)3</li> <li>(B)14 (D)15</li> <li>2. The gram formula mass of NH<sub>4</sub>Cl is (A)22.4 g/mole (C)53.5 g/mole</li> <li>3. The gram-formula mass of (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> is (A)46.0 g (C)78.0 g</li> <li>(B) 64.0 g (D)96.0 g</li> <li>4. Which substance has the greatest molecular mass? (A)H<sub>2</sub>O<sub>3</sub> (C) CF<sub>4</sub></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>EXAMPS</b><br><b>Unit 7 Mole</b><br>9. The empirical formula of a compound is $CH_3$ .<br>The molecular formula of this compound could<br>be<br>(A) $CH_4$ (C) $C_2H_6$<br>(B) $C_3H_4$ (D) $C_3H_6$<br>10. What is the empirical formula of a compound<br>that contains 30.4% nitrogen and 69.6% oxygen<br>by mass?<br>(A) NO (C) N <sub>2</sub> O <sub>3</sub><br>(B) NO <sub>2</sub> (D) N <sub>2</sub> O <sub>3</sub><br>11. A compound consists of 25.9% nitrogen and<br>74.1% oxygen by mass. What is the empirical<br>formula of the compound?<br>(A) NO (C) N <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>If a which sample contains a total of 9.0 × 10<sup>23</sup> atoms?</li> <li>(A) 0.50 mole of HC1 (C) 1.5 moles of Cu (B) 0.75 mole of H<sub>2</sub>O (D) 1.5 moles of H<sub>2</sub></li> <li>What is the total number of atoms contained in a 1.00-mole sample of helium?</li> <li>(A) 1.00 atom (B) 2.00 atoms</li> <li>(C) 1.20 × 10<sup>23</sup> atoms</li> <li>(D) 6.02 × 10<sup>23</sup> atoms</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>AFT</li> <li>18. What is the total number of nitrogen atoms in 0.25 mole of NO<sub>2</sub> gas?</li> <li>(A) 1.5 × 10<sup>23</sup></li> <li>(B) 6.0 × 10<sup>23</sup></li> <li>(C) 3.0 × 10<sup>23</sup></li> <li>(C) 3.0 × 10<sup>23</sup></li> <li>(D) 1.2 × 10<sup>24</sup></li> <li>19. The volume occupied by 9.03 × 10<sup>23</sup> molecules of Ng as at STP is closest to (A) 0.500 liter (C) 22.4 liters</li> <li>(B) 1.50 liters (D) 33.6 liters</li> <li>20. The total number of molecules in 34.0 grams of NH<sub>3</sub> is equal to (A) 1.00 × 22.4 (C) 1.00 × 60.2 × 10<sup>23</sup></li> <li>(C) 1.00 × 60.2 × 10<sup>23</sup></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>I. What is the total number of moles of atoms present in 1 gram formula mass of Pb(C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>)<sub>2</sub> (A)9 (C)3 (B)14 (D)15</li> <li>2. The gram formula mass of NH<sub>4</sub>Cl is (A)22.4 g/mole (C)53.5 g/mole (B)28.0 g/mole (C)95.5 g/mole (B)28.0 g/mole (C)95.5 g/mole</li> <li>3. The gram-formula mass of (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> is (A)46.0 g (C) 78.0 g (B)64.0 g (D)96.0 g</li> <li>4. Which substance has the greatest molecular mass? (A)H<sub>2</sub>O<sub>2</sub> (C)CF<sub>4</sub> (B)NO (D)1<sub>2</sub></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mole       9. The empirical formula of a compound is CH3,<br>The molecular formula of this compound could<br>be<br>(A) CH4 (C) C, H4<br>(B) C, H4 (D) C, H4<br>(B) C, H4 (D) C, H4<br>(B) C, H4 (D) C, H4<br>(C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DR<br>16. Which sample contains a total of 9.0 × 10 <sup>21</sup><br>atoms?<br>(A)0.50 mole of HC1 (C) 1.5 moles of Cu<br>(B)0.75 mole of H <sub>2</sub> O (D)1.5 moles of H <sub>2</sub><br>17. What is the total number of atoms contained in a<br>1.00-mole sample of helium?<br>(A)1.00 atom<br>(B)2.00 atoms<br>(C) 1.20 × 10 <sup>42</sup> atoms<br>(D)6.02 × 10 <sup>73</sup> atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>AFT</li> <li>18. What is the total number of nitrogen atoms in 0.25 mole of NO<sub>2</sub> gas?</li> <li>(A) 1.5 × 10<sup>3</sup></li> <li>(B) 6.0 × 10<sup>23</sup></li> <li>(C) 3.0 × 10<sup>23</sup></li> <li>(D) 1.2 × 10<sup>24</sup></li> <li>19. The volume occupied by 9.03 × 10<sup>23</sup> molecules of N<sub>3</sub> gas at STP is closest to (A) 0.500 liter (D) 33.6 liters</li> <li>20. The total number of molecules in 34.0 grams of NH<sub>3</sub> is equal to (A) 1.00 × 22.4 (C) 1.00 × 6.02 × 10<sup>23</sup></li> <li>(D) 2.00 × 6.02 × 10<sup>23</sup></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <ol> <li>What is the total number of moles of atoms present in 1 gram formula mass of Pb(C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>); (A)9 (C)3 (B)14 (D)15</li> <li>The gram formula mass of NH<sub>4</sub>Cl is (A)22.4 g/mole (C)53.5 g/mole (B)28.0 g/mole (C)95.5 g/mole</li> <li>The gram-formula mass of (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> is (A)46.0 g (C)78.0 g (B)64.0 g (D)96.0 g</li> <li>Which substance has the greatest molecular mass? (A)H<sub>2</sub>O<sub>2</sub> (C) CF<sub>4</sub> (B)NO (D)I<sub>4</sub></li> <li>The number of moles of molecules in a 12.0-gram sample of Cl<sub>2</sub> is</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Vinit 7     Mole       9. The empirical formula of a compound is CH3,<br>The molecular formula of this compound could<br>be<br>(A) CH4 (C) C2H4<br>(B) C3H4 (D) C3H4       10. What is the empirical formula of a compound<br>that contains 30.4% nitrogen and 69.6% oxygen<br>by mass?       (A) NO (C) N2O,<br>(B) NO2 (C) N2O,<br>(B) NO2 (C) N2O,<br>(C) N2O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>Here and the sample contains a total of 9.0 × 10<sup>21</sup> atoms?</li> <li>(A)0.50 mole of HC1 (C) 1.5 moles of Cu (B)0.75 mole of H2 (D) 1.5 moles of H2</li> <li>What is the total number of atoms contained in a 1.00-mole sample of helium?</li> <li>(A) 1.00 atom</li> <li>(B) 2.00 atoms</li> <li>(C) 1.20 × 10<sup>23</sup> atoms</li> <li>(D) 6.02 × 10<sup>73</sup> atoms</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>AFT</li> <li>18. What is the total number of nitrogen atoms in 0.25 mole of NO<sub>2</sub> gas?</li> <li>(A) 1.5 × 10<sup>3</sup></li> <li>(B) 6.0 × 10<sup>23</sup></li> <li>(C) 3.0 × 10<sup>23</sup></li> <li>(C) 3.0 × 10<sup>24</sup></li> <li>(D) 1.2 × 10<sup>24</sup></li> <li>19. The volume occupied by 9.03 × 10<sup>23</sup> molecules of N<sub>8</sub> gas at STP is closest to (A) 0.500 liter (D) 33.6 liters</li> <li>20. The total number of molecules in 34.0 grams of NH<sub>8</sub> is equal to (A) 1.00 × 22.4 (C) 1.00 × 6.02 × 10<sup>23</sup></li> <li>(D) 2.00 × 6.02 × 10<sup>23</sup></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ul> <li>I. What is the total number of moles of atoms present in 1 gram formula mass of Pb(C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>)<sub>2</sub> (A)9 (C)3 (B)14 (D)15</li> <li>2. The gram formula mass of NH<sub>4</sub>Cl is (A)22.4 g/mole (C)53.5 g/mole (B)28.0 g/mole (C)55.5 g/mole</li> <li>3. The gram-formula mass of (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> is (A)46.0 g (C) 78.0 g (B)64.0 g (D)96.0 g</li> <li>4. Which substance has the greatest molecular mass? (A)H<sub>2</sub>O<sub>2</sub> (C) CF<sub>4</sub> (B)NO (D)1<sub>4</sub></li> <li>5. The number of moles of molecules in a 12.0-gram sample of CL<sub>2</sub> is 12.0 moles</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vinit 7     Mole       9. The empirical formula of a compound is CH3,<br>The molecular formula of this compound could<br>be<br>(A) CH4 (C) C, H4<br>(B) C, H4 (D) C, H4<br>(B) C, H4 (D) C, H4<br>(B) C, H4 (D) C, H4<br>(C) C, H4<br>(C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>16. Which sample contains a total of 9.0 × 10<sup>21</sup> atoms?</li> <li>(A)0.50 mole of HC1 (C) 1.5 moles of Cu (B)0.75 mole of HQ (D)1.5 moles of H<sub>2</sub></li> <li>17. What is the total number of atoms contained in a 1.00-mole sample of helium?</li> <li>(A) 1.00 atom</li> <li>(B) 2.00 atoms</li> <li>(C) 1.20 × 10<sup>23</sup> atoms</li> <li>(D) 6.02 × 10<sup>23</sup> atoms</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>AFT</li> <li>18. What is the total number of nitrogen atoms in 0.25 mole of NO<sub>2</sub> gas? <ul> <li>(A) 1.5 × 10<sup>3</sup></li> <li>(B) 6.0 × 10<sup>23</sup></li> <li>(C) 3.0 × 10<sup>23</sup></li> <li>(C) 3.0 × 10<sup>24</sup></li> </ul> </li> <li>19. The volume occupied by 9.03 × 10<sup>23</sup> molecules of N<sub>3</sub> gas at STP is closest to <ul> <li>(A) 0.500 liter</li> <li>(D) 33.6 liters</li> </ul> </li> <li>20. The total number of molecules in 34.0 grams of NH<sub>3</sub> is equal to <ul> <li>(A) 1.00 × 22.4</li> <li>(C) 1.00 × 6.02 × 10<sup>23</sup></li> <li>(D) 2.00 × 6.62 × 10<sup>23</sup></li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| D<br>1. What is the total number of moles of atoms present in 1 gram formula mass of Pb(C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> );<br>(A)9 (C)3<br>(B)14 (D)15<br>2. The gram formula mass of NH <sub>2</sub> Cl is<br>(A)22.4 g/mole (C)53.5 g/mole<br>(B)28.0 g/mole (C)95.5 g/mole<br>(B)44.0 g (C)78.0 g<br>(B)(64.0 g (C)78.0 g<br>(B)(78.0                                                                                                                                                                                                                                                                                 | Vinit 7       Mole         9. The empirical formula of a compound is CH3, The molecular formula of this compound could be       (A) CH4, (C) C,H4, (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DR<br>16. Which sample contains a total of 9.0 × 10 <sup>23</sup><br>atoms?<br>(A)0.50 mole of HC1 (C) 1.5 moles of Cu<br>(B)0.75 mole of H20 (D)1.5 moles of H2<br>17. What is the total number of atoms contained in a<br>1.00-mole sample of helium?<br>(A)1.00 atom<br>(B)2.00 atoms<br>(C) 1.20 × 10 <sup>42</sup> atoms<br>(D)6.02 × 10 <sup>42</sup> atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>AFT</li> <li>18. What is the total number of nitrogen atoms in 0.25 mole of NO<sub>2</sub> gas? <ul> <li>(A) 1.5 × 10<sup>23</sup></li> <li>(B) 6.0 × 10<sup>23</sup></li> <li>(C) 3.0 × 10<sup>23</sup></li> <li>(D) 1.2 × 10<sup>24</sup></li> </ul> </li> <li>19. The volume occupied by 9.03 × 10<sup>23</sup> molecules of Ng gas at STP is closest to <ul> <li>(A) 0.500 liter</li> <li>(D) 3.6 k liters</li> <li>(D) 33.6 liters</li> </ul> </li> <li>20. The total number of nolecules in 34.0 grams of NH<sub>3</sub> is equal to <ul> <li>(A) 1.00 × 22.4</li> <li>(B) 2.00 × 6.02 × 10<sup>23</sup></li> <li>(D) 2.00 × 6.02 × 10<sup>23</sup></li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Differentiately solution<br>1. What is the total number of moles of atoms<br>present in 1 gram formula mass of Pb(C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> ) <sub>2</sub><br>(A) 9 (C) 3<br>(B) 14 (D) 15<br>2. The gram formula mass of NH <sub>2</sub> Cl is<br>(A) 22.4 g/mole (C) 53.5 g/mole<br>(B) 28.0 g/mole (C) 995.5 g/mole<br>(B) 28.0 g/mole (C) 995.5 g/mole<br>(B) 28.0 g/mole (C) 995.5 g/mole<br>(B) 44.0 g (C) 78.0 g<br>(B) 64.0 g (C) 78.0 g<br>(B) 78.0 g<br>(C) C F4<br>(B) NO<br>12.0 moles<br>(A) (C)<br>$\frac{120}{12.0}$ mole 12.0 × 35.5 moles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mole       Unit 7     Mole       9. The empirical formula of a compound is CH3,<br>The molecular formula of this compound could<br>be<br>(A) CH4, (C) C,H4,<br>(B) C,H4, (D) C,H4,<br>(B) C,H4, (D) C,H4,<br>(C) NA1 is the empirical formula of a compound<br>that contains 30.4% ntrogen and 69.6% oxygen<br>by mass?       10. What is the empirical formula of a compound<br>that contains 30.4% ntrogen and 69.6% oxygen<br>by mass?       (A) NO     (C) N2,O3,<br>(D) N2,O3       11. A compound consists of 25.9% nitrogen and<br>74.1% oxygen by mass. What is the empirical<br>formula of the compound?<br>(A) NO       (D) NQ0,<br>(D) NQ0,<br>(D) NQ0,<br>(D) NQ0,<br>(D) NQ0,<br>(D) NQ0,<br>(D) N2,O3       12. What is the percent by mass of oxygen in<br>propanal, CH3, CH2, CH07<br>(A) 100 (C) (C) 21.3%       13. In which compound is the percent by mass of<br>oxygen greatest?<br>(A) BeO (C) (CaO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DR<br>16. Which sample contains a total of 9.0 × 10 <sup>23</sup><br>atoms?<br>(A)0.50 mole of HC1 (C) 1.5 moles of Cu<br>(B) 0.75 mole of H <sub>2</sub> O (D) 1.5 moles of H <sub>2</sub><br>17. What is the total number of atoms contained in a<br>1.00-mole sample of helium?<br>(A) 1.00 atom<br>(B) 2.00 atoms<br>(C) 1.20 × 10 <sup>23</sup> atoms<br>(D) 6.02 × 10 <sup>23</sup> atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>AFT</li> <li>18. What is the total number of nitrogen atoms in 0.25 mole of NO<sub>2</sub> gas? <ul> <li>(A) 1.5 × 10<sup>23</sup></li> <li>(B) 6.0 × 10<sup>23</sup></li> <li>(C) 3.0 × 10<sup>23</sup></li> <li>(D) 1.2 × 10<sup>24</sup></li> </ul> </li> <li>19. The volume occupied by 9.03 × 10<sup>23</sup> molecules of Ng as at STP is closest to <ul> <li>(A) 0.500 liter</li> <li>(D) 3.6 liters</li> <li>(D) 2.2 × 10<sup>23</sup></li> </ul> </li> <li>20. The total number of notecules in 34.0 grams of NH<sub>3</sub> is equal to <ul> <li>(A) 1.00 × 22.4</li> <li>(B) 2.00 × 6.62 × 10<sup>23</sup></li> <li>(D) 2.00 × 6.62 × 10<sup>23</sup></li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Differentiately solution<br>1. What is the total number of moles of atoms<br>present in 1 gram formula mass of Pb(C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> ) <sub>2</sub> '<br>(A) 9 (C) 3<br>(B) 14 (D) 15<br>2. The gram formula mass of NH <sub>2</sub> Cl is<br>(A) 22.4 µmole (C) 53.5 g/mole<br>(B) 28.0 g/mole (D) 95.5 g/mole<br>(B) 28.0 g/mole (D) 95.5 g/mole<br>(B) 28.0 g/mole (D) 95.5 g/mole<br>(B) 64.0 g (C) 78.0 g<br>(B) 14.0 D I <sub>2</sub><br>3. The gram-formula mass of CNH <sub>2</sub> CO <sub>3</sub> is<br>(A) 14,0 C <sub>3</sub> (C) CF <sub>4</sub><br>(B) NO (C) I <sub>2</sub><br>5. The number of moles of molecules in a 12.0-<br>gram sample of Cl <sub>2</sub> is<br>$\frac{19.0}{5.5}$ mole 12.0 moles<br>(A) (C)<br>$\frac{12.0}{11.0}$ mole 12.0 x 35.5 moles<br>(B) (D) (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>PARET</b><br>Unit 7 Mole<br>9. The empirical formula of a compound is CH <sub>3</sub> .<br>The molecular formula of this compound could<br>be<br>(A) CH <sub>4</sub> (C) C <sub>2</sub> H <sub>4</sub><br>(B) C <sub>2</sub> H <sub>4</sub> (D) C <sub>3</sub> H <sub>6</sub><br>(A) NO (C) N <sub>2</sub> O <sub>3</sub><br>(A) NO (C) N <sub>2</sub> O <sub>3</sub><br>(B) NO <sub>2</sub> (D) N <sub>2</sub> O <sub>3</sub><br>11. A compound consists of 2.5 9% nitrogen and<br>74.1% oxygen by mass. What is the empirical<br>formula of the compound?<br>(A) NO (C) N <sub>2</sub> O <sub>3</sub><br>11. A compound consists of 2.5 9% nitrogen and<br>74.1% oxygen by mass. What is the empirical<br>formula of the compound?<br>(A) NO (C) N <sub>2</sub> O <sub>3</sub><br>12. What is the percent by mass of oxygen in<br>propanal, CH <sub>2</sub> (H <sub>2</sub> (HO?<br>(C) 38.1%<br>(B) 27.6% (D) 62.1%<br>13. In which compound is the percent by mass of<br>oxygen greatest?<br>(A) BeO (C) CaO<br>(B) MgO (D) SrO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>Which sample contains a total of 9.0 × 10<sup>23</sup> atoms?</li> <li>(A) 0.50 mole of HC1 (C) 1.5 moles of Cu (B) 0.75 mole of H20 (D) 1.5 moles of H2</li> <li>17. What is the total number of atoms contained in a 1.00-mole sample of helium?</li> <li>(A) 1.00 atom</li> <li>(B) 2.00 atoms</li> <li>(C) 1.20 × 10<sup>23</sup> atoms</li> <li>(D) 6.02 × 10<sup>23</sup> atoms</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>AFT</li> <li>18. What is the total number of nitrogen atoms in 0.25 mole of NO<sub>2</sub> gas? <ul> <li>(A) 1.5 × 10<sup>23</sup></li> <li>(B) 6.0 × 10<sup>23</sup></li> <li>(C) 3.0 × 10<sup>23</sup></li> <li>(D) 1.2 × 10<sup>24</sup></li> </ul> </li> <li>19. The volume occupied by 9.03 × 10<sup>23</sup> molecules of N<sub>4</sub> gas at STP is closest to (A) 0.500 liters (D) 33.6 liters</li> <li>(D) The total number of nolecules in 34.0 grams of NH<sub>4</sub> is equal to (A) 1.00 × 22.4 (E) 2.00 × 22.4 (C) 1.00 × 6.02 × 10<sup>23</sup></li> <li>(D) 2.00 × 2.4 (C) 1.00 × 6.02 × 10<sup>23</sup></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Differentiately solution<br>1. What is the total number of moles of atoms<br>present in 1 gram formula mass of Pb(C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> ) <sub>2</sub> '<br>(A) 9 (C) 3<br>(B) 14 (D) 15<br>2. The gram formula mass of NH <sub>2</sub> Cl is<br>(A) 22.4 µmole (C) 53.5 µmole<br>(B) 28.0 µmole (D) 95.5 µmole<br>(B) 28.0 µmole (D) 95.5 µmole<br>(B) 28.0 µmole (D) 95.5 µmole<br>(B) 64.0 g (C) 78.0 g<br>(B) 64.0 g (C) 78.0 g<br>(C) 61.0 mole (C) 12.0 moles<br>(C) 12.0 moles<br>(C) 12.0 moles<br>(C) 12.0 moles<br>(C) 12.0 moles<br>(B) (D) (D) 12<br>(C) 12.0 moles<br>(C) 12.0 moles<br>(C) (D) 12<br>(C) 12.0 moles<br>(D) (D) 12<br>(C) 12.0 moles<br>(D) 12<br>(C) 12.0 moles<br>(D) (D) 12<br>(C) 12.0 moles<br>(D) 12<br>(D) 12<br>(                                                                                                 | Vinit 7       Mole         9. The empirical formula of a compound is CH3, The molecular formula of this compound could be       (A) CH4, (C) C; H4, (B) C; H4, (D) C; H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DR<br>16. Which sample contains a total of 9.0 × 10 <sup>23</sup><br>atoms?<br>(A)0.50 mole of HC1 (C) 1.5 moles of Cu<br>(B) 0.75 mole of H <sub>2</sub> O (D) 1.5 moles of H <sub>2</sub><br>17. What is the total number of atoms contained in a<br>1.00-mole sample of helium?<br>(A)1.00 atom<br>(B) 2.00 atoms<br>(C) 1.20 × 10 <sup>23</sup> atoms<br>(D) 6.02 × 10 <sup>23</sup> atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>AFT</li> <li>18. What is the total number of nitrogen atoms in 0.25 mole of NO<sub>2</sub> gas? <ul> <li>(A) 1.5 × 10<sup>23</sup></li> <li>(B) 6.0 × 10<sup>23</sup></li> <li>(C) 3.0 × 10<sup>23</sup></li> <li>(D) 1.2 × 10<sup>24</sup></li> </ul> </li> <li>19. The volume occupied by 9.03 × 10<sup>23</sup> molecules of N<sub>4</sub> gas at STP is closest to (A) 0.500 liters (D) 33.6 liters</li> <li>(D) The total number of nolecules in 34.0 grams of NH<sub>3</sub> is equal to (A) 1.00 × 22.4 (E) 2.00 × 22.4 (C) 1.00 × 6.02 × 10<sup>23</sup></li> <li>(D) 2.00 × 6.02 × 10<sup>23</sup></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Definitely solution<br>1. What is the total number of moles of atoms<br>present in 1 gram formula mass of Pb(C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> ) <sub>2</sub> '<br>(A) 9 (C) 3<br>(B) 14 (D) 15<br>2. The gram formula mass of NH <sub>2</sub> Cl is<br>(A) 22.4 µmole (C) 53.5 µmole<br>(B) 28.0 µmole (D) 95.5 µmole<br>(B) 28.0 µmole (D) 95.5 µmole<br>(B) 28.0 (C) 78.0 g<br>(B) 64.0 g (C) 78.0 g<br>(C) 61.0 g<br>(C) 78.0 g<br>(C) 78                                                                                                                                                                     | Vinit 7       Mole         9. The empirical formula of a compound is CH3, The molecular formula of this compound could be       (A) CH4, (C) C;H4, (B) C;H4, (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DR<br>16. Which sample contains a total of 9.0 × 10 <sup>23</sup><br>atoms?<br>(A) 0.50 mole of HC1 (C) 1.5 moles of Cu<br>(B) 0.75 mole of H <sub>2</sub> (O) 1.5 moles of H <sub>2</sub><br>17. What is the total number of atoms contained in a<br>1.00-mole sample of helium?<br>(A) 1.00 atom<br>(B) 2.00 atoms<br>(C) 1.20 × 10 <sup>73</sup> atoms<br>(D) 6.02 × 10 <sup>73</sup> atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>AFT</li> <li>18. What is the total number of nitrogen atoms in 0.25 mole of NO<sub>2</sub> gas? <ul> <li>(A) 1.5 × 10<sup>23</sup></li> <li>(B) 6.0 × 10<sup>23</sup></li> <li>(C) 3.0 × 10<sup>23</sup></li> <li>(D) 1.2 × 10<sup>24</sup></li> </ul> </li> <li>19. The volume occupied by 9.03 × 10<sup>23</sup> molecules of N<sub>4</sub> gas at STP is closest to (A) 0.500 liter (D) 33.6 liters</li> <li>(D) The total number of nolecules in 34.0 grams of NH<sub>4</sub> is equal to (A) 1.00 × 22.4 (E) 2.00 × 22.4 (C) 1.00 × 6.02 × 10<sup>23</sup></li> <li>(D) 2.00 × 6.02 × 10<sup>23</sup></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Definitely solution<br>1. What is the total number of moles of atoms<br>present in 1 gram formula mass of Pb(C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> ) <sub>2</sub> '<br>(A) 9 (C) 3<br>(B) 14 (D) 15<br>2. The gram formula mass of NH <sub>2</sub> Cl is<br>(A) 22.4 µmole (C) 53.5 µmole<br>(B) 28.0 µmole (C) 95.5 µmole<br>(B) 28.0 µmole (C) 95.5 µmole<br>(B) 28.0 µmole (C) 95.5 µmole<br>(C) 15.0 µmole<br>(C) 12.0 µmole<br>(C) 0.1 (C) 0.1<br>(C) 0.2 (D) 0.2 µmole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Vinit 7       Mole         9. The empirical formula of a compound is CH3, The molecular formula of this compound could be       (A) CH4, (C) C;H4, (B) C;H4, (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DR<br>16. Which sample contains a total of 9.0 × 10 <sup>23</sup><br>atoms?<br>(A) 0.50 mole of HC1 (C) 1.5 moles of Cu<br>(B) 0.75 mole of H <sub>2</sub> (O) (D) 1.5 moles of H <sub>3</sub><br>17. What is the total number of atoms contained in a<br>1.00-mole sample of helium?<br>(A) 1.00 atom<br>(B) 2.00 atoms<br>(C) 1.20 × 10 <sup>23</sup> atoms<br>(D) 6.02 × 10 <sup>23</sup> atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>AFT</li> <li>18. What is the total number of nitrogen atoms in 0.25 mole of NO<sub>2</sub> gas? <ul> <li>(A) 1.5 × 10<sup>23</sup></li> <li>(B) 6.0 × 10<sup>23</sup></li> <li>(C) 3.0 × 10<sup>23</sup></li> <li>(D) 1.2 × 10<sup>24</sup></li> </ul> </li> <li>19. The volume occupied by 9.03 × 10<sup>23</sup> molecules of N<sub>2</sub> gas at STP is closest to (A) 0.500 liter (D) 33.6 liters</li> <li>(D) The total number of nolcules in 34.0 grams of NH<sub>3</sub> is equal to (A) 1.00 × 22.4 (E) 2.00 × 22.4 (C) 1.00 × 6.02 × 10<sup>23</sup></li> <li>(D) 2.00 × 6.02 × 10<sup>23</sup></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Definitely solution<br>1. What is the total number of moles of atoms<br>present in 1 gram formula mass of Pb(C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> ) <sub>2</sub> '<br>(A) 9 (C) 3<br>(B) 14 (D) 15<br>2. The gram formula mass of NH <sub>2</sub> Cl is<br>(A) 22.4 µmole (C) 53.5 g/mole<br>(B) 28.0 g/mole (C) 95.5 g/mole<br>(B) 28.0 g/mole (C) 95.5 g/mole<br>(B) 28.0 g/mole (C) 95.5 g/mole<br>(C) 76.0 g<br>(C) 76                                                                                                                                                           | Vinit 7     Mole       9. The empirical formula of a compound is CH3.<br>The molecular formula of this compound could<br>be<br>(A) CH4. (C) C4H4.<br>(B) C4H4. (C) C4H4.<br>(B) C4H4. (C) C4H4.<br>(C) C4H4.<br>(C) C4H4. (C) C4H4.<br>(C) C4H4.<br>(C) C4H4.<br>(C) C4H4.<br>(C) C4H4.<br>(C) C4H4.<br>(C) C4H4.<br>(C) C4H4.<br>(C) C4H4.<br>(C) C4H4.<br>(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DR<br>16. Which sample contains a total of 9.0 × 10 <sup>23</sup><br>atoms?<br>(A) 0.50 mole of HC1 (C) 1.5 moles of Cu<br>(B) 0.75 mole of H <sub>2</sub> (O) (D) 1.5 moles of H <sub>3</sub><br>17. What is the total number of atoms contained in a<br>1.00-mole sample of helium?<br>(A) 1.00 atom<br>(B) 2.00 atoms<br>(C) 1.20 × 10 <sup>23</sup> atoms<br>(D) 6.02 × 10 <sup>23</sup> atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>AFT</li> <li>18. What is the total number of nitrogen atoms in 0.25 mole of NO<sub>2</sub> gas? (A)1.5 × 10<sup>23</sup> (B)6.0 × 10<sup>23</sup> (C) 3.0 × 10<sup>23</sup> (D) 1.2 × 10<sup>24</sup> (D) 1.2 × 10<sup>25</sup> (D) 1.2 × 10<sup>2</sup></li></ul>                                                                |
| Definitely solution<br>1. What is the total number of moles of atoms<br>present in 1 gram formula mass of Pb(C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> ) <sub>2</sub> '<br>(A) 9 (C) 3<br>(B) 14 (D) 15<br>2. The gram formula mass of NH <sub>2</sub> Cl is<br>(A) 22.4 µmole (C) 53.5 g/mole<br>(B) 28.0 g/mole (C) 995.5 g/mole<br>(B) 28.0 g/mole (C) 995.5 g/mole<br>(B) 28.0 g/mole (C) 995.5 g/mole<br>(B) 64.0 g (C) 78.0 g<br>(B) 05.0 g<br>4. Which substance has the greatest molecular<br>mass?<br>(A) H <sub>2</sub> O <sub>2</sub> (C) CF <sub>4</sub><br>(B) NO (C) I <sub>1</sub><br>5. The number of moles of molecules in a 12.0-<br>gram sample of Cl <sub>2</sub> is<br>$\frac{19.0}{5.5}$ mole 12.0 moles<br>(A) (C)<br>$\frac{12.0}{1.5}$ mole 12.0 x 35.5 moles<br>(B) (D)<br>6. The total number of moles represented by 20<br>grams of CaCO <sub>3</sub> is<br>(A) 1 (C) 0.1<br>(B) 2. (D) 0.2<br>7. What is the total mass of 2.0 moles of H <sub>2</sub> (g)?<br>(A) 1.0 g (C) 3.0 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Vinit 7     Mole       9. The empirical formula of a compound is CH3.<br>The molecular formula of this compound could<br>be<br>(A) CH4. (C) CH4.<br>(B) C2H4. (D) C3H6.       10. What is the empirical formula of a compound<br>that contains 30-4% nitrogen and 69.6% oxygen<br>by mass?<br>(A) NO (C) N2O3.<br>(B) NO2 (D) N2O3.       11. A compound consists of 25.9% nitrogen and<br>74.1% oxygen by mass. What is the empirical<br>formula of the compound?<br>(A) NO (C) N2O3.       12. What is the percent by mass of oxygen in<br>propanal. CH3.CH2.CHO?<br>(A) NO (C) N2O3.       13. In which compound is the percent by mass of<br>oxygen greatest?<br>(A) BO3. (D) SFO       14. An example of an empirical formula is<br>(A) CH4. (C) C4H40H2.<br>(B) C7H4. (D) C4H204.       15. Which molecular formula is correctly paired<br>with its corresponding empirical formula?<br>(A) CC, H4. (D) C4H204.       15. Which molecular formula is correctly paired<br>with its corresponding empirical formula?<br>(A) CC, H4. (C) C4H404.       15. Which molecular formula is correctly paired<br>with its corresponding empirical formula?<br>(A) CC, H4. and CH4.<br>(C) C4H4. and CH4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DR<br>16. Which sample contains a total of 9.0 × 10 <sup>23</sup><br>atoms?<br>(A) 0.50 mole of HC1 (C) 1.5 moles of Cu<br>(B) 0.75 mole of H <sub>2</sub> O (D) 1.5 moles of H <sub>3</sub><br>17. What is the total number of atoms contained in a<br>1.00-mole sample of helium?<br>(A) 1.00 atom<br>(B) 2.00 atoms<br>(C) 1.20 × 10 <sup>23</sup> atoms<br>(D) 6.02 × 10 <sup>23</sup> atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>AFT</li> <li>18. What is the total number of nitrogen atoms in 0.25 mole of NO<sub>2</sub> gas? (A)1.5 × 10<sup>23</sup> (B)6.0 × 10<sup>23</sup> (C) 3.0 × 10<sup>23</sup> (D) 1.2 × 10<sup>24</sup> (B) 1.2 × 10<sup>24</sup> (D) 1.2 × 10<sup>24</sup> (C) 1.2 × 10<sup>24</sup> (D) 1.2 × 10<sup>24</sup> (D) 1.2 × 10<sup>24</sup> (D) 1.2 × 10<sup>24</sup> (D) 1.2 × 10<sup>25</sup> (D) 1.2 × 10<sup>2</sup></li></ul>                                                                |
| Definition of the total number of moles of atoms present in 1 gram formula mass of Pb(C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> ) <sub>2</sub> ' (A) 9 (C) 3<br>(B) 14 (D) 15<br>(A) 22.4 µmole (C) 53.5 µmole (B) 28.0 µmole (C) 95.5 µmole (B) 28.0 µmole (D) 95.5 µmole (B) 28.0 µmole (D) 95.5 µmole (B) 28.0 µmole (D) 95.5 µmole (C) 78.0 g (B) 64.0 g (C) 78.0 g (C) 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mole       Unit 7     Mole       9. The empirical formula of a compound is CH3.<br>The molecular formula of this compound could<br>be<br>(A) CH4. (C) CH4.<br>(B) C2H4. (D) C3H4.       10. What is the empirical formula of a compound<br>that contains 30-4% nitrogen and 69.0% oxygen<br>by mass?<br>(A) NO (C) N2O3.<br>(B) NO2 (D) N2O3.       11. A compound consists of 25.9% nitrogen and<br>74.1% oxygen by mass. What is the empirical<br>formula of the compound?<br>(A) NO (C) N2O3.       12. What is the percent by mass of oxygen in<br>propanal. CH3.CH2.CHO?<br>(A) 10.0% (C) 38.1%.<br>(B) 27.6% (D) 62.1%       13. In which compound is the percent by mass of<br>oxygen greatest?<br>(A) BO5 (C) CAO3.<br>(B) MgO (D) 5FO       14. An example of an empirical formula is<br>(A) CH4. (C) C,H4.(CH)2.<br>(B) C;H4. (D) C,H2.(H2).<br>(B) C;H4. (D) C,H2.(H2).<br>(B) C;H4. (D) C,H2.(H2).<br>(C) CA0.<br>(C) CA0.<br>(C) CA0.<br>(C) CA0.<br>(C) CA0.<br>(C) CA0.<br>(C) CA0.<br>(C) CA1.<br>(C) C,CH4.and CH4.<br>(C) C,CH4.and CH4.<br>(C) C;H4.and C;H4.<br>(C) C;H4.and CH4.<br>(C) C;H4.and C;H4.<br>(C) C;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DR<br>16. Which sample contains a total of 9.0 × 10 <sup>23</sup><br>stoms?<br>(A)0.50 mole of HC1 (C) 1.5 moles of Cu<br>(B)0.75 mole of H <sub>2</sub> 0 (D)1.5 moles of H <sub>3</sub><br>17. What is the total number of stoms contained in a<br>1.00-mole sample of helium?<br>(A)1.00 atom<br>(B)2.00 atoms<br>(C) 1.20 × 10 <sup>23</sup> atoms<br>(D)6.02 × 10 <sup>23</sup> atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>AFT</li> <li>18. What is the total number of nitrogen atoms in 0.25 mole of NO<sub>2</sub> gas? (A)1.5 × 10<sup>32</sup> (B)6.0 × 10<sup>33</sup> (C)3.0 × 10<sup>33</sup> (C)1.2 × 10<sup>34</sup></li> <li>19. The volume occupied by 9.03 × 10<sup>33</sup> molecules of N<sub>3</sub> gas at STP is closest to (A)0.500 liter (D)3.6 liters (B)1.50 liters (D)3.6 liters (D)3.6 diters (D)2.00 × 2.24 (B)2.00 × 22.4 (C)1.00 × 6.02 × 10<sup>23</sup> (C)1.00 × 6.02 × 10<sup>23</sup></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1. What is the total number of moles of atoms present in 1 gram formula mass of Pb(C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> )?         (A) 9       (C) 3         (B) 14       (D) 15         2. The gram formula mass of NH <sub>2</sub> Cl is (A)22.4 µmole (C) 53.5 µmole (B) 28.0 µmole (C) 995.5 µmole (B) 28.0 µmole (C) 995.5 µmole (C) 35.5 µmole (C) 35.5 µmole (C) 35.5 µmole (C) 36.0 µmole (C) 195.0 µmole (C) 195.0 µmole (C) 18.0 µmole (C) 196.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>PARFT</b><br>Unit 7 Mole<br>9. The empirical formula of a compound is CH <sub>3</sub> .<br>The molecular formula of this compound could<br>be<br>(A) CH <sub>4</sub> (C) C <sub>4</sub> H <sub>4</sub><br>(B) C <sub>2</sub> H <sub>4</sub> (D) C <sub>3</sub> H <sub>6</sub><br>10. What is the empirical formula of a compound<br>that contains 30-4% nitrogen and 69.6% oxygen<br>by mass?<br>(A) NO (C) N <sub>2</sub> O <sub>3</sub><br>(B) NO <sub>2</sub> (D) N <sub>2</sub> O <sub>3</sub><br>11. A compound consists of 2.5 9% nitrogen and<br>74.1% oxygen by mass. What is the empirical<br>formula of the compound?<br>(A) NO (C) N <sub>2</sub> O <sub>3</sub><br>11. A compound consists of 2.5 9% nitrogen and<br>74.1% oxygen by mass. What is the empirical<br>formula of the compound?<br>(A) NO (C) N <sub>2</sub> O <sub>3</sub><br>12. What is the percent by mass of oxygen in<br>propanal, CH <sub>2</sub> (H,CHO?<br>(A) DO <sup>5</sup> (C) 28.1%<br>(B) 27.6% (D) 62.1%<br>13. In which compound is the percent by mass of<br>oxygen greatest?<br>(A) BeO (C) CaO<br>(B) MgO (D) 5rO<br>14. An example of an empirical formula is<br>(A) CH <sub>4</sub> (C) C <sub>4</sub> H <sub>4</sub> (OH) <sub>2</sub><br>(B) C <sub>1</sub> H <sub>4</sub> (D) C <sub>4</sub> H <sub>2</sub> O <sub>6</sub><br>15. Which molecular formula is correctly paired<br>with its corresponding empirical formula?<br>(A) CC, C <sub>4</sub> H <sub>4</sub> and CH <sub>4</sub><br>(C) C <sub>4</sub> H <sub>4</sub> and CH <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DR<br>16. Which sample contains a total of 9.0 × 10 <sup>23</sup><br>stoms?<br>(A)0.50 mole of HC1 (C) 1.5 moles of Cu<br>(B)0.75 mole of H <sub>2</sub> O (D)1.5 moles of H <sub>3</sub><br>17. What is the total number of stoms contained in a<br>1.00-mole sample of helium?<br>(A)1.00 atom<br>(B)2.00 atoms<br>(C) 1.20 × 10 <sup>23</sup> atoms<br>(D)6.02 × 10 <sup>23</sup> atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>AFT</li> <li>18. What is the total number of nitrogen atoms in 0.25 mole of NO<sub>2</sub> gas? <ul> <li>(A) 1.5 × 10<sup>32</sup></li> <li>(B) 6.0 × 10<sup>23</sup></li> <li>(C) 3.0 × 10<sup>23</sup></li> <li>(D) 1.2 × 10<sup>24</sup></li> </ul> </li> <li>19. The volume occupied by 9.03 × 10<sup>23</sup> molecules of N<sub>3</sub> gas at STP is closest to <ul> <li>(A) 0.500 liter</li> <li>(D) 3.6 liters</li> <li>(D) 3.6 liters</li> </ul> </li> <li>20. The total number of molecules in 34.0 grams of NH<sub>3</sub> is equal to <ul> <li>(A) 1.00 × 2.2.4</li> <li>(B) 2.00 × 22.4</li> <li>(C) 1.00 × 6.02 × 10<sup>23</sup></li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Definition of the total number of moles of atoms present in 1 gram formula mass of Pb(C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> ) <sub>2</sub> ' (A) 9 (C) 3<br>(B) 14 (D) 15<br>(A) 22.4 µmole (C) 53.5 µmole (B) 28.0 µmole (C) 95.5 µmole (B) 28.0 µmole (D) 95.5 µmole (B) 28.0 µmole (C) 78.0 g (B) 44.0 g (C) 78.0 g (B) 12.0 moles 35.7 (A) 14,0 C, (C) CF <sub>4</sub> (B) NO (C) 12<br>(B) NO (C) CF <sub>4</sub> (B) NO (C) 12<br>(C) The number of moles of molecules in a 12.0-gram sample of Cl <sub>2</sub> is $\frac{180}{35.5}$ mole $12.0 \times 35.5$ moles $(A)$ (C) $\frac{120}{11.0}$ mole $12.0 \times 35.5$ moles $(B)$ (D) (C) $\frac{120}{11.0}$ mole $12.0 \times 35.5$ moles $(B)$ (D) 20 g (C) 3.0 g (B) 2.0 g (C) 3.0                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>PARET</b><br><b>Unit 7</b><br><b>1</b> The molecular formula of a compound is CFI <sub>3</sub> .<br>The molecular formula of this compound could<br>be<br>(A) CH <sub>4</sub> (C) C <sub>2</sub> H <sub>4</sub><br>(B) C <sub>2</sub> H <sub>4</sub> (D) C <sub>3</sub> H <sub>6</sub><br><b>10</b> . What is the empirical formula of a compound<br>that contains 30-4% nitrogen and 69.6% oxygen<br>by mass?<br>(A) NO (C) N <sub>2</sub> O <sub>3</sub><br><b>11</b> . A compound consists of 25.9% nitrogen and<br>7A.1% oxygen by mass. What is the empirical<br>formula of the compound?<br>(A) NO (C) N <sub>2</sub> O <sub>3</sub><br><b>11</b> . A compound consists of 25.9% nitrogen and<br>7A.1% oxygen by mass. What is the empirical<br>formula of the compound?<br>(A) NO (C) N <sub>2</sub> O <sub>3</sub><br><b>12</b> . What is the percent by mass of<br>oxygen greatest?<br>(A) BO (C) CaO<br>(B) M <sub>2</sub> O (D) SrO<br><b>13</b> . In which compound is the percent by mass of<br>oxygen greatest?<br>(A) BO (C) C <sub>4</sub> H <sub>4</sub><br>(B) C <sub>1</sub> H <sub>4</sub> (D) C <sub>4</sub> H <sub>4</sub> OH <sub>2</sub><br>(B) C <sub>1</sub> H <sub>4</sub> (D) C <sub>4</sub> H <sub>4</sub> OH <sub>2</sub><br>(B) C <sub>1</sub> H <sub>4</sub> (D) C <sub>4</sub> H <sub>4</sub> OH <sub>2</sub><br>(B) C <sub>1</sub> H <sub>4</sub> (D) C <sub>4</sub> H <sub>4</sub> OH <sub>2</sub><br>(B) C <sub>4</sub> H <sub>4</sub> and C <sub>1</sub> H <sub>2</sub><br>(D) P <sub>4</sub> O <sub>16</sub> and P <sub>4</sub> O <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DR<br>16. Which sample contains a total of 9.0 × 10 <sup>23</sup><br>stoms?<br>(A)0.50 mole of HC1 (C) 1.5 moles of Cu<br>(B)0.75 mole of H20 (D)1.5 moles of H3<br>17. What is the total number of stoms contained in a<br>1.00-mole sample of helium?<br>(A)1.00 atom<br>(B)2.00 atoms<br>(C) 1.20 × 10 <sup>23</sup> atoms<br>(D)6.02 × 10 <sup>23</sup> atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>AFT</li> <li>18. What is the total number of nitrogen atoms in 0.25 mole of NO<sub>2</sub> gas? (A)1.5 × 10<sup>32</sup> (B)6.0 × 10<sup>33</sup> (C)3.0 × 10<sup>33</sup> (C)3.0 × 10<sup>33</sup> (D)1.2 × 10<sup>34</sup> (D)1.2 × 10<sup>35</sup> (D)1.2 × 10<sup>35</sup></li></ul> |
| Differentiately solution<br>1. What is the total number of moles of atoms<br>present in 1 gram formula mass of Pb(C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> ) <sub>2</sub><br>(A)9 (C)3<br>(B)14 (D)15<br>2. The gram formula mass of NH <sub>2</sub> Cl is<br>(A)22.4 g/mole (C)53.5 g/mole<br>(B)28.0 g/mole (C)95.5 g/mole<br>(B)28.0 g/mole (C)95.5 g/mole<br>(B)28.0 g/mole (C)95.5 g/mole<br>(B)28.0 g/mole (C)95.5 g/mole<br>(B)44.0 g (C)78.0 g<br>(B)(44.0 g (C)78.0 g<br>(B)(44.0 g (C)78.0 g<br>(B)NO (C)CF <sub>4</sub><br>(B)NO (C)CF <sub>4</sub><br>(B)NO (C)<br>12.0 moles<br>(A) (C)<br>13.0 mole 12.0 × 35.5 moles<br>(B) (D)<br>2. The number of moles of molecules in a 12.0-<br>gram sample of Cl <sub>2</sub> is<br>13.0 mole 12.0 × 35.5 moles<br>(B) (D)<br>3. The total number of moles represented by 20<br>grams of CaCO <sub>3</sub> is<br>(A)1 (C) (C)<br>(B)2 (D)0.2<br>7. What is the total mass of 2.0 moles of H <sub>2</sub> (g)?<br>(A)1.0 g (C)3.0 g<br>(B)2.0 g (D)4.0 g<br>3. A sample of an unknown gas at STP has a<br>density 01.25 grams per titer. What is the gram<br>molecular mass of this gas?<br>(A)28.0 g (C)40.0 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Material       Mote         9. The empirical formula of a compound is CH3, The molecular formula of this compound could be       (A) CH4, (C) C,H4, (B) C,H4, (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DR<br>16. Which sample contains a total of 9.0 × 10 <sup>93</sup><br>atoms?<br>(A) 0.50 mole of HC1 (C) 1.5 moles of Cu<br>(B) 0.75 mole of H20 (D) 1.5 moles of H3<br>17. What is the total number of atoms contained in a<br>1.00-mole sample of helium?<br>(A) 1.00 atom<br>(B) 2.00 atoms<br>(C) 1.20 × 10 <sup>93</sup> atoms<br>(D) 6.02 × 10 <sup>93</sup> atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>AFT</li> <li>18. What is the total number of nitrogen atoms in 0.25 mole of NO<sub>2</sub> gas? <ul> <li>(A) 1.5 × 10<sup>23</sup></li> <li>(B) 6.0 × 10<sup>23</sup></li> <li>(C) 3.0 × 10<sup>23</sup></li> <li>(D) 1.2 × 10<sup>24</sup></li> </ul> </li> <li>19. The volume occupied by 9.03 × 10<sup>23</sup> molecules of N<sub>4</sub> gas at STP is closest to (A) 0.500 liters (D) 33.6 liters</li> <li>(D) The total number of notcules in 34.0 grams of Nf1, is equal to (A) 1.00 × 22.4 (B) 2.00 × 22.4 (C) 1.00 × 6.02 × 10<sup>23</sup></li> <li>(D) 2.00 × 6.02 × 10<sup>23</sup></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Differentiately of the total number of moles of atoms present in 1 gram formula mass of Pb(C <sub>2</sub> H <sub>3</sub> O <sub>2</sub> )/(A) <sup>9</sup> (C) <sup>3</sup> (B) <sup>14</sup> (D) <sup>15</sup><br>2. The gram formula mass of NH <sub>2</sub> Cl is (A)22.4 g/mole (C)53.5 g/mole (B)28.0 g/mole (C)55.5 g/mole (B)28.0 g/mole (C)55.5 g/mole (B)28.0 g/mole (C)55.5 g/mole (C)64.0 g (C)78.0 g (B)(44.0 g (C)78.0 g (C)78.0 g (B)(44.0 g (C)78.0 g (C)7                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>EXAMPS</b><br><b>Unit 7</b> Mole<br>9. The empirical formula of a compound is CH <sub>3</sub> .<br>The molecular formula of this compound could<br>be<br>(A) CH <sub>4</sub> (C) C,H <sub>4</sub><br>(B) C <sub>2</sub> H <sub>4</sub> (D) C <sub>3</sub> H <sub>6</sub><br>10. What is the empirical formula of a compound<br>that contains 30.4% introgen and 69.6% oxygen<br>by mass?<br>(A) NO (C) N <sub>2</sub> O <sub>3</sub><br>11. A compound consits of 25.9% nitrogen and<br>74.1% oxygen by mass. What is the empirical<br>formula of the compound?<br>(A) NO (C) N <sub>2</sub> O <sub>3</sub><br>13. A compound consits of 25.9% nitrogen and<br>74.1% oxygen by mass. What is the empirical<br>formula of the compound?<br>(A) NO (C) N <sub>2</sub> O <sub>3</sub><br>14. A compound substationary (D) N <sub>2</sub> O <sub>3</sub><br>15. Notice the compound?<br>(A) NO (C) N <sub>2</sub> O <sub>3</sub><br>16. Notice the compound?<br>(A) NO (C) N <sub>2</sub> O <sub>3</sub><br>17. A nexample of an empirical formula is<br>(A) CH <sub>4</sub> (C) C,H <sub>4</sub> O(H) <sub>2</sub><br>(B) C,H <sub>4</sub> (D) C,H <sub>4</sub> O(H) <sub>2</sub><br>(B) C,H <sub>4</sub> (D) C,H <sub>4</sub> O(H) <sub>2</sub><br>(B) C,H <sub>4</sub> (D) C,H <sub>4</sub> O(H) <sub>2</sub><br>(C) C,H <sub>4</sub> (D) C,H <sub>4</sub> O(H) <sub>2</sub><br>(C) C,H <sub>4</sub> (D) C,H <sub>4</sub> O(H) <sub>2</sub><br>(D) P,O <sub>10</sub> and P,O <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DR<br>16. Which sample contains a total of 9.0 × 10 <sup>23</sup><br>atoms?<br>(A) 0.50 mole of HC1 (C) 1.5 moles of Cu<br>(B) 0.75 mole of H20 (D) 1.5 moles of H3<br>17. What is the total number of atoms contained in a<br>1.00-mole sample of helium?<br>(A) 1.00 atom<br>(B) 2.00 atoms<br>(C) 1.20 × 10 <sup>73</sup> atoms<br>(D) 6.02 × 10 <sup>73</sup> atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>AFT</li> <li>18. What is the total number of nitrogen atoms in 0.25 mole of NO<sub>2</sub> gas? <ul> <li>(A) 1.5 × 10<sup>23</sup></li> <li>(B) 6.0 × 10<sup>23</sup></li> <li>(C) 3.0 × 10<sup>23</sup></li> <li>(D) 1.2 × 10<sup>24</sup></li> </ul> </li> <li>19. The volume occupied by 9.03 × 10<sup>23</sup> molecules of N<sub>2</sub> gas at STP is closest to <ul> <li>(A) 0.500 liter</li> <li>(D) 23.6 liters</li> </ul> </li> <li>20. The total number of notcuese in 34.0 grams of NH<sub>3</sub> is equal to <ul> <li>(A) 1.00 × 2.24</li> <li>(B) 2.00 × 2.24</li> <li>(C) 1.00 × 6.02 × 10<sup>23</sup></li> </ul> </li> <li>20. The total number of notcuese in 34.0 grams of NH<sub>3</sub> is equal to <ul> <li>(A) 1.00 × 6.02 × 10<sup>23</sup></li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Definition of the total number of moles of atoms present in 1 gram formula mass of $Pb(C_2H_1Q_2)_2'$<br>(A)9 (C)3 (B)14 (D)15<br>2. The gram formula mass of NH <sub>2</sub> Cl is (A)22.4 g/mole (C)53.5 g/mole (B)28.0 g/mole (C)95.5 g/mole<br>(B)28.0 g/mole (C)95.5 g/mole<br>(B)28.0 g/mole (C)95.5 g/mole<br>(B)28.0 g/mole (C)95.5 g/mole<br>(C)95.5 g/mole<br>(C)95.0 g (C)78.0 g<br>(C)46.0 g (C)78.0 g<br>(C)6.0 g (C)78.0 g<br>(C)78.0 g<br>(C)78.0 g (C)78.0 g<br>(C)78.0 g<br>(C)78.0 g (C)78.0 g<br>(C)78.0 g<br>(C)78.0 g (C)78.0 g<br>(C)78.0 g<br>(C) | <b>PARET</b><br><b>Unit 7</b><br><b>1</b> The molecular formula of a compound is CH <sub>3</sub><br>The molecular formula of a compound is CH <sub>3</sub><br>The molecular formula of a compound is CH <sub>3</sub><br>(B) C <sub>2</sub> H <sub>4</sub> (C) C <sub>2</sub> H <sub>4</sub> (D) C <sub>3</sub> H <sub>6</sub> (C) C <sub>4</sub> H <sub>4</sub> (E) C <sub>2</sub> H <sub>4</sub> (D) C <sub>3</sub> H <sub>6</sub> (D) C <sub>4</sub> H <sub>6</sub> (E) C <sub>4</sub> H <sub>6</sub> (D) C <sub>4</sub> H <sub>6</sub> (C) C <sub>4</sub> H <sub>6</sub> (D) P <sub>6</sub> O <sub>16</sub> and CH <sub>16</sub> (C) C <sub>4</sub> H <sub>6</sub> (D) P <sub>6</sub> O <sub>16</sub> and P <sub>5</sub> O <sub>5</sub> (D) P <sub>6</sub> O <sub>16</sub> and P <sub>5</sub> O <sub>5</sub> (D) P <sub>6</sub> O <sub>16</sub> and P <sub>5</sub> O <sub>5</sub> (D) P <sub>6</sub> O <sub>16</sub> and P <sub>5</sub> O <sub>5</sub> (D) P <sub>6</sub> O <sub>16</sub> and P <sub>5</sub> O <sub>5</sub> (D) P <sub>6</sub> O <sub>16</sub> and P <sub>5</sub> O <sub>5</sub> (D) P <sub>6</sub> O <sub>16</sub> and P <sub>5</sub> O <sub>5</sub> (D) P <sub>6</sub> O <sub>16</sub> and P <sub>5</sub> O <sub>5</sub> (D) P <sub>6</sub> O <sub>16</sub> and P <sub>5</sub> O <sub>5</sub> (D) P <sub>6</sub> O <sub>16</sub> and P <sub>5</sub> O <sub>5</sub> (D) P <sub>6</sub> O <sub>16</sub> and P <sub>5</sub> O <sub>5</sub> (D) P <sub>6</sub> O <sub>16</sub> and P <sub>5</sub> O <sub>5</sub> (D) P <sub>6</sub> O <sub>16</sub> and P <sub>5</sub> O <sub>5</sub> (D) P <sub>6</sub> O <sub>16</sub> and P <sub>5</sub> O <sub>5</sub> (D) P <sub>6</sub> O <sub>16</sub> and P <sub>5</sub> O <sub>5</sub> (D) P <sub>6</sub> O <sub>16</sub> and P <sub>5</sub> O <sub>5</sub> (D) P <sub>6</sub> O <sub>16</sub> and P <sub>5</sub> O <sub>5</sub> (D) P <sub>6</sub> O <sub>16</sub> and P <sub>5</sub> O <sub>5</sub> (D) P <sub>6</sub> O <sub>16</sub> and P <sub>5</sub> O <sub>5</sub> (D) P <sub>6</sub> O <sub>16</sub> and P <sub>5</sub> O <sub>5</sub> (D) P <sub>6</sub> O <sub>16</sub> and P <sub>5</sub> O <sub>5</sub> (D) P <sub>6</sub> O <sub>16</sub> and P <sub>5</sub> O <sub>5</sub> (D) P <sub>6</sub> O <sub>16</sub> and P <sub>5</sub> O <sub>5</sub> (D) P <sub>6</sub> O <sub>16</sub> and P <sub>6</sub> O <sub>5</sub> (D) P <sub>6</sub> O <sub>16</sub> and P <sub>6</sub> O <sub>5</sub> (D) P <sub>6</sub> O <sub>16</sub> and P <sub>6</sub> O <sub>5</sub> (D) P <sub>6</sub> O <sub>16</sub> and P <sub>6</sub> O <sub>5</sub> (D) P <sub>6</sub> O <sub>16</sub> and P <sub>6</sub> O <sub>5</sub> (D) P <sub>6</sub> O <sub>16</sub> and P <sub>6</sub> O <sub>5</sub> (D) P <sub>6</sub> O <sub>16</sub> and P <sub>6</sub> O <sub>5</sub> (D) P <sub>6</sub> O <sub>16</sub> and P <sub>6</sub> O <sub>5</sub> (D) P <sub>6</sub> O <sub>16</sub> and P <sub>6</sub> O <sub>5</sub> (D) P <sub>6</sub> O <sub>16</sub> and P <sub>6</sub> O <sub>16</sub> (D) P <sub>6</sub> O <sub>16</sub> and P <sub>6</sub> O <sub>16</sub> (D) P <sub>6</sub> O <sub>16</sub> a | DR<br>16. Which sample contains a total of 9.0 × 10 <sup>93</sup><br>soms?<br>(A) 0.05 mole of HC1 (C) 1.5 moles of Cu<br>(B) 0.75 mole of H20 (D) 1.5 moles of H3<br>17. What is the total number of atoms contained in a<br>1.00-mole sample of helium?<br>(A) 1.00 atom<br>(B) 2.00 atoms<br>(C) 1.20 × 10 <sup>73</sup> atoms<br>(D) 6.02 × 10 <sup>73</sup> atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>AFT</li> <li>18. What is the total number of nitrogen atoms in 0.25 mole of NO<sub>2</sub> gas? <ul> <li>(A) 1.5 × 10<sup>23</sup></li> <li>(B) 6.0 × 10<sup>23</sup></li> <li>(C) 3.0 × 10<sup>23</sup></li> <li>(D) 1.2 × 10<sup>24</sup></li> </ul> </li> <li>19. The volume occupied by 9.03 × 10<sup>23</sup> molecules of N<sub>2</sub> gas at STP is closest to (A) 0.500 liter (D) 33.6 liters</li> <li>(D) The total number of notcules in 34.0 grams of Nf1, is equal to (A) 1.00 × 22.4 (B) 2.00 × 22.4 (C) 1.00 × 6.02 × 10<sup>23</sup></li> <li>(D) 2.00 × 6.02 × 10<sup>23</sup></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Differentiately solution<br>1. What is the total number of moles of atoms<br>present in 1 gram formula mass of Pb(C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> ) <sub>2</sub> '<br>(A) 9 (C) 3<br>(B) 14 (D) 15<br>2. The gram formula mass of NH <sub>2</sub> Cl is<br>(A) 22.4 µmole (C) 53.5 g/mole<br>(B) 28.0 g/mole (D) 95.5 g/mole<br>(B) 28.0 g/mole (D) 95.5 g/mole<br>(B) 28.0 g/mole (D) 95.5 g/mole<br>(B) 64.0 g (C) 78.0 g<br>(B) 100 (D) 1 <sub>2</sub><br>3. The number of moles of molecular mass?<br>(A) 11 <sub>2</sub> O <sub>2</sub> (C) CF <sub>4</sub><br>(B) NO (C) 12 <sub>3</sub><br>(B) 12.0 moles<br>(A) (C) 12<br>(B) 12.0 moles<br>(A) (C) 12<br>(B) (D) 12<br>5. The number of moles represented by 20<br>grams of CaCO <sub>3</sub> is<br>(A) 1 (C) 0.1<br>(B) (D)<br>6. The total number of moles represented by 20<br>grams of CaCO <sub>3</sub> is<br>(A) 1 (C) 0.1<br>(B) 2.0 g (D) 0.2<br>7. What is the total mass of 2.0 moles of H <sub>2</sub> (g)?<br>(A) 1.0 g (C) 3.0 g<br>(B) 2.0 g (D) 4.0 g<br>3. A sample of an unknown gas at STP has a<br>density of 1.25 grams per liter. What is the gram<br>molecular mass of this gas?<br>(A) 28.0 g (C) 80.0 g<br>(B) 44.0 g (D) 80.0 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>PARET</b><br><b>Unit 7</b><br><b>1</b> The molecular formula of a compound is CH <sub>3</sub> .<br>The molecular formula of this compound could<br>be<br>(A) CH <sub>4</sub> (C) C,H <sub>4</sub><br>(B) C,H <sub>4</sub> (C) C,H <sub>4</sub><br>(B) C,H <sub>4</sub> (C) C,H <sub>4</sub><br>(B) C,H <sub>4</sub> (C) C,H <sub>4</sub><br>(C) NA is the empirical formula of a compound<br>that contains 30-4% nitrogen and 69.6% oxygen<br>by mass?<br>(A) NO (C) N <sub>2</sub> O <sub>3</sub><br>(B) NO <sub>2</sub> (D) N <sub>2</sub> O <sub>3</sub><br><b>1</b> . A compound consists of 25.9% nitrogen and<br>74.1% oxygen by mass. What is the empirical<br>formula of the compound?<br>(A) NO (C) N <sub>2</sub> O <sub>3</sub><br><b>1</b> . A compound consists of 25.9% nitrogen and<br>74.1% oxygen by mass. What is the empirical<br>formula of the compound?<br>(A) NO (C) N <sub>2</sub> O <sub>3</sub><br><b>1</b> . An example of an empirical formula is<br>(A) CH <sub>4</sub> (C) C,H <sub>4</sub> (CHO?<br>(A) EO (C) CaO<br>(B) MgO (D) 5rO<br><b>1</b> . An example of an empirical formula is<br>(A) CH <sub>4</sub> (C) C,H <sub>4</sub> (CH) <sub>2</sub><br>(B) C,H <sub>4</sub> (D) C,H <sub>4</sub> OC<br><b>1</b> . An example of an empirical formula is<br>(A) CH <sub>4</sub> (C) C,H <sub>4</sub> (CH) <sub>2</sub><br>(B) C,H <sub>4</sub> and C,H <sub>5</sub><br>(C) C,A <sup>4</sup> , and C,H <sub>5</sub><br>(D) P,O <sub>10</sub> and P,O <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DR<br>16. Which sample contains a total of 9.0 × 10 <sup>23</sup><br>atoms?<br>(A)0.50 mole of HG1 (C) 1.5 moles of Cu<br>(B)0.75 mole of H <sub>2</sub> O (D)1.5 moles of H <sub>3</sub><br>17. What is the total number of atoms contained in a<br>1.00-mole sample of helium?<br>(A)1.00 atoms<br>(C) 1.20 × 10 <sup>23</sup> atoms<br>(D)6.02 × 10 <sup>23</sup> atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>AFT</li> <li>18. What is the total number of nitrogen atoms in 0.25 mole of NO<sub>2</sub> gas? <ul> <li>(A) 1.5 × 10<sup>3</sup></li> <li>(B) 6.0 × 10<sup>30</sup></li> <li>(C) 3.0 × 10<sup>31</sup></li> <li>(D) 1.2 × 10<sup>34</sup></li> </ul> </li> <li>19. The volume occupied by 9.03 × 10<sup>33</sup> molecules of NA<sub>3</sub> gas at STP is closest to <ul> <li>(A) 0.500 liter</li> <li>(D) 3.6 liters</li> <li>(D) 3.5 6 liters</li> </ul> </li> <li>20. The total number of molecules in 34.0 grams of NH<sub>3</sub> is equal to <ul> <li>(A) 1.00 × 2.2 4</li> <li>(B) 2.00 × 2.2 4</li> <li>(C) 1.20 × 6.02 × 10<sup>23</sup></li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Definition of the total number of moles of atoms present in 1 gram formula mass of Pb(C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> ) <sub>2</sub> ' (A) 9 (C) 3<br>(B) 14 (D) 15<br>(A) 22.4 µmole (C) 53.5 g/mole (B) 28.0 g/mole (C) 95.5 g/mole (B) 28.0 g/mole (C) 95.6 g (B) 64.0 g (C) 78.0 g (B) 70.0 g (C) CF <sub>4</sub> (B) NO (C) 12.0 moles (C) 12.0 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>EVALUATE:</b> The molecular formula of a compound is CH <sub>3</sub> .<br>The molecular formula of a compound is CH <sub>3</sub> .<br>The molecular formula of this compound could<br>be<br>(A) CH <sub>4</sub> (C) C, H <sub>4</sub><br>(B) C, H <sub>4</sub> (D) C, H <sub>6</sub><br>(A) NO (C) N <sub>2</sub> O <sub>3</sub><br>(B) NO <sub>2</sub> (D) N <sub>2</sub> O <sub>3</sub><br>(A) NO (C) N <sub>2</sub> O <sub>3</sub><br>(B) NO <sub>2</sub> (D) N <sub>2</sub> O <sub>3</sub><br>(C) NO (C) N <sub>2</sub> O <sub>3</sub><br>(C) N <sub>2</sub> O <sub>3</sub><br>(D) N <sub>2</sub> O <sub>3</sub><br>(D) C) O <sub>2</sub> O <sub>1</sub> O <sub>3</sub><br>(D) C) O <sub>3</sub> O (D) SrO<br>(A) An example of an empirical formula is<br>(A) CH <sub>4</sub> (C) C, H <sub>4</sub> (CH) <sub>2</sub><br>(D) C, H <sub>4</sub> and CH <sub>4</sub><br>(C) C, H <sub>4</sub> and C, H <sub>2</sub><br>(D) P, O <sub>10</sub> and P, O <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DR<br>16. Which sample contains a total of 9.0 × 10 <sup>23</sup><br>atoms?<br>(A) 0.0 mole of HC1 (C) 1.5 moles of Cu<br>(B) 0.75 mole of H20 (D) 1.5 moles of H3<br>17. What is the total number of atoms contained in a<br>1.00-mole sample of helium?<br>(A) 1.00 atoms<br>(C) 1.20 × 10 <sup>23</sup> atoms<br>(D) 6.02 × 10 <sup>23</sup> atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>AFT</li> <li>18. What is the total number of nitrogen atoms in 0.25 mole of NO<sub>2</sub> gas? <ul> <li>(A) 1.5 × 10<sup>3</sup></li> <li>(B) 6.0 × 10<sup>30</sup></li> <li>(C) 3.0 × 10<sup>31</sup></li> <li>(D) 1.2 × 10<sup>34</sup></li> </ul> </li> <li>19. The volume occupied by 9.03 × 10<sup>33</sup> molecules of NA<sub>3</sub> gas at STP is closest to <ul> <li>(A) 0.500 liter</li> <li>(D) 3.6 liters</li> <li>(D) 3.5 6 liters</li> </ul> </li> <li>20. The total number of molecules in 34.0 grams of NH<sub>3</sub> is equal to <ul> <li>(A) 1.00 × 2.2 4</li> <li>(B) 2.00 × 2.2 4</li> <li>(C) 1.200 × 6.02 × 10<sup>23</sup></li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| 1. Which formula correctly represents antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Office         Cnemical Reactions           y         8. Given the unbalanced equation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12. Which equation is correctly balanced?<br>(A)CaO + $2H_2O \rightarrow Ca(OH)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16. Given the balanced equation:<br>$K_2CO_3 + BaCl_2 \rightarrow 2X + BaCO_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (V) oxide?<br>(A) SbO <sub>5</sub> (C) Sb <sub>2</sub> O <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\_Al + \_CuSO_4 \rightarrow \_Al_2(SO_4)_3 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (B) NH <sub>3</sub> + 2O <sub>2</sub> $\rightarrow$ HNO <sub>3</sub> + H <sub>2</sub> O<br>(C) Ca(OH) <sub>b</sub> + 2H <sub>2</sub> PO <sub>2</sub> $\rightarrow$ Ca(PO <sub>2</sub> ) <sub>b</sub> + 3H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | What is the correct formula for the product represented by the letter $X$ ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (B) Sb <sub>5</sub> O (D) Sb <sub>5</sub> O <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (1) - (1) - (2) = (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1) + (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (A)K (C)KCO <sub>3</sub><br>(B)Cl (D)KCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2. Given the reaction:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | When the equation is balanced using the<br>smallest whole-number coefficients, what is the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (D) Cu + 12004 - Color + 120 Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17. Given the incomplete equation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $Mg(s) + 2 AgNO_3(aq) \rightarrow Mg(NO_3)_2(aq) +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +2 coefficient of Al?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $CaCl_2 \rightarrow Which are found with normalistic and holomore$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Ag(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (A)1 (C)3<br>(B)2 (D)4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\underline{-\text{Al}_2(\text{SO}_4)_3} + \underline{-\text{Ce}(\text{OH}_{j_2} \rightarrow \text{Al}(\text{OH}_{j_3} \rightarrow \text{A}(\text{OH}_{j_3} \rightarrow$ | the incomplete equation?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Which type of reaction is represented?<br>(A) single replacement (C) synthesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9. Given the unbalanced equation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _CasO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $(A)Ca + Cl 	(C)CaCl + O_2 (B)Ca + Cl_2 	(D)CaCl + H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (B) double replacement (D) decomposition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\underline{Al}(s) + \underline{O}_2(g) \rightarrow \underline{Al}_2O_1(s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | When the equation is completely balanced using<br>the smallest whole number coefficients the sum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18. Given the balanced equation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ol> <li>Which equation represents a double replacements</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | when this equation is correctly balanced using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (A) 5 (C) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $X + C_{1} \rightarrow C_{2}H_{1}C_{1} + H_{1}C_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (A) 2 Na + 2 $H_2O \rightarrow 2$ NaOH + $H_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | smallest whole numbers, what is the coefficient of $O_{\alpha}(g)$ ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (B) 9 (D) 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Which molecule is represented by 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (B) $CaCO_3 \rightarrow CaO + CO_2$<br>(C) $LiOH + HCI \rightarrow LiCI + H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (A)6 (C)3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14. Given the unbalanced equation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (A) $C_2H_4$ (C) $C_3H_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $(D)CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (B)2 (D)4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $Al(OH)_3 + H_2SO_4 \rightarrow Al_2(SO_4)_3 + H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (B) $C_2H_6$ (D) $C_3H_8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4. 2 $NH_3(g) \leftrightarrow N_2(g) + 3 H_2(g)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10. Given the unbalanced equation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | What is the coefficient in front of the H <sub>2</sub> O when                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19. Given the incomplete equation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| What type of reaction is shown above?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the equation is completely balanced using the smallest whole number coefficients?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $2 N_2O_3(g) \rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (A) synthesis (C) single replaceme<br>(B) decomposition (D) double replaceme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ent What is the coefficient of $AI_2(SO_4)_3$ when the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (A)6 (C)3<br>(B)2 (D)4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Which set of products completes and balances<br>the incomplete equation?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5 + 2 $SO_{2}(g) + O_{2}(g) \leftrightarrow 2 SO_{2}(g) \rightarrow 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | equation is completely balanced using the smallest whole-number coefficients?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (D) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $= (A) 2 N_2(g) + 3 H_2(g) = (C) 4 N O_2(g) + O_2(g) + \dots + \dots + N O_2(g) + O_2(g) + \dots + O_2(g) +$ |
| What type of reaction is shown above?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (A)1 (C)3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $2Mg + O_2 \rightarrow 2X$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (B) 2 $N_2(g)$ + 2 $O_2(g)$ (D) 4 $NO(g)$ + $SO_2(g)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (A) synthesis (C) single replaceme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ant (B)2 (D)4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | What is the correct formula for the product<br>represented by the letter X?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (B) decomposition (D) double replacement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11. When the equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (A)MgO (C)MgO <sub>2</sub><br>(B)Mg <sub>2</sub> O (D)Mg <sub>2</sub> OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <ol><li>When hydrocarbons burn completely in an<br/>excess of oxygen, the products are</li></ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\underline{} C_2 H_4 + \underline{} O_2 \rightarrow \underline{} CO_2 + \underline{} H_2 O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (c) <sup>2</sup> 2. (c).u.85.c.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (A) carbon monoxide and water<br>(B) carbon dioxide and water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | is balanced using smallest whole numbers, what<br>is the coefficient of the O.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | liefer menseel viell, surfaced a devide fit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (C) carbon monoxide and carbon dioxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (A)1 (C)3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (D) carbon dioxide and carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (B)2 (D)4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gentine - Constant - Constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <ol><li>If an equation is balanced properly, both sides<br/>the equation must have the same number of</li></ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (A) atoms (C) molecules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| emistry- Unit 8 DR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | :AFT 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chemistry- Unit 8 DRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FT 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| emistry- Unit 8 DR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AFT 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chemistry- Unit 8 DRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FT 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| emistry- Unit 8 DR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VAFT 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chemistry- Unit 8 DRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FT 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ernistry- Unit 8 DR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AFT 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chemistry- Unit 8 DRAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FT 34<br>15. Given the balanced equation:<br>K <sub>2</sub> CO <sub>4</sub> + BaC <sub>1</sub> → 2X + BaCO,<br>What is the correct formal point the order represented                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| emistry- Unit 8 DR<br>1. Given the equation:<br>$6 CO_2(g) + 6 H_2O(f) \rightarrow C_gH_2O_g(g) + 6 O_2(g)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CAFT 33<br>Unit 9 Stoichiometry<br>6. Given the reaction<br>$N_{f}(g) \rightarrow 2 NH_{f}(g)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chemistry- Unit 8 DRA<br>11. Given the reaction:<br>$2C_{2}H_{2}+7O_{2} \rightarrow 4CO_{2}+6H_{2}O_{2}$<br>What is the total number of CO_ molecules produced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FT 34<br>15. Given the balanced equation:<br>$K_{CO_{2}} + 8aC_{1}$ , $\pm 2X + 8aC_{2}$ ,<br>What is the correct formula for the product represented<br>by the letter X?<br>A K CO_{2}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| emistry- Unit 8 DR<br>1. Given the equation:<br>$6 CO_2(g) + 6 H_2O(t) \rightarrow C_g H_2O_4(g) + 6 O_2(g)$<br>What is the minimum number of Nets of CO_2(g).<br>where the difference in Condeces 30 Automatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CAFT 33<br>Unit 9 Stoichiometry<br>6. Given the reaction<br>$N_{y}(g) + 3 H_{y}(g) \rightarrow 2 NH_{y}(g)$<br>How many filter of ammonia, measured at STP, are<br>required under 26 Direct on the formed an economicality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Chemistry- Unit 8 DRAI<br>11. Given the reaction:<br>$2C_2 t_6 + 7 O_2 \rightarrow 4 CO_2 + 6 H_2O$<br>What is the total number of CO <sub>2</sub> molecules produced<br>when one mole of C_2 t_6 is consumed?<br>(4) 6 07 2 to <sup>23</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FT 34<br>15. Given the balanced equation:<br>$K_{CO_4} + 8aC_{1} \rightarrow 2X + 8aCO_{3}$<br>What is the correct formula for the product represented<br>by the letter X?<br>A) KCO_4<br>B) KCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| emistry- Unit 8 DR<br>1. Given the equation:<br>$6 CO_2(g) + 6 H_2O(f) \rightarrow C_0 H_2O_0(g) + 6 O_2(g)$<br>What is the minimum number of Ners of CO <sub>2</sub> (g).<br>measured as 1579, needed to produce 32.0 grans of<br>oxygen?<br>0. direct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>2AFT</b> 33<br>Unit 9 Steichiometry<br>6. Given the reaction<br>$N_{f(g)} + 3 H_{f(g)} \rightarrow 2 NH_{f(g)}$<br>How many filters of ammonia, measured at STP, are<br>produced when 28.0 grams of nitrogen is completely<br>consumed?<br>$N_{f(g)} = 0.1472$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chemistry- Unit 8 DRA<br>11. Given the reaction:<br>$2C_2T_6 = 7 O_2 \rightarrow 4 CO_2 + 6 H_2O$<br>What is the total number of CO <sub>2</sub> notecules produced<br>when one mole of C_F_4 is consumed?<br>(A) 6 6 02 + 10 <sup>20</sup><br>(B) 25 00 + 10 <sup>20</sup><br>(C) 31 00 + 10 <sup>20</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FT 34<br>15. Given the balanced equation:<br>$K_{CO_4} + 8aC_5 \rightarrow 2X + BaCO_5$<br>What is the correct formula for the product represented<br>by the letter X?<br>A) KCO<br>B) KCI<br>C) K<br>D) C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| emistry- Unit 8 DR<br>1. Given the equation:<br>$6 CO_2(g) + 6 H_2O(f) \rightarrow C_0 H_{12}O_0(g) + 6 O_2(g)$<br>What is the minimum number of Ners of CO <sub>2</sub> (g).<br>measured as STP, needed to produce 32.0 grams of<br>oxygen?<br>A) 264 L C) 192 L<br>B) 32.0 L D) 22.4 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CAFT 33<br>Unit 9 Stoichiometry<br>6. Given the reaction<br>$N_{y(g)} + 3 H_{y(g)} \rightarrow 2 NH_{y(g)}$<br>How many filers of ammonia, measured at STP, are<br>produced when 28.0 grams of inflorger is computely<br>consume?<br>A) 44.8 C) 11.2<br>B) 5.00 D) 224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chemistry- Unit 8 DRA<br>11. Given the reaction:<br>$2C_2F_6 + 7 O_2 \rightarrow 4 CO_2 + 6 H_2O$<br>What is the total number of CO <sub>2</sub> molecules produced<br>when one mole of $C_2F_6$ is consumed?<br>A) 6 6 2× 10 <sup>29</sup><br>B) 2(5.02 × 10 <sup>29</sup> )<br>C) 3(60.2 × 10 <sup>29</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FT 34<br>15. Given the balanced equation:<br>$K_{CO_2}$ + BaC, $\rightarrow 2X$ + BaCO,<br>What is the correct formula for the product represented<br>by the latter X?<br>A) KCO,<br>B) KCI<br>C) K<br>D) C1<br>17. Given the equation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| emistry- Unit 8 DR<br>1. Given the equation:<br>$6 CO_2(g) + 6 H_2O(f) \rightarrow C_6 H_{12}O_6(g) + 6 O_2(g)$<br>What is the minimum number of Nilers of CO <sub>2</sub> (g),<br>measured at STP, needed to produce 32.0 grams of<br>avgen?<br>A) 264 L C) 192 L<br>B) 32.0 D) 22.4 L<br>C) 192 L<br>C) 20.2 D) 22.4 L<br>C) 20.2 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CAFT 33<br>Unit 9 Stoichiometry<br>6. Given the reaction<br>$N_{y(g)} + 3 H_{y(g)} \rightarrow 2 NH_{y(g)}$<br>How many filers of ammonia, measured at STP, are<br>produced when 28.0 grams of inflorger is computely<br>consume?<br>A) 44.8 C) 11.2<br>B) 5.00 D) 22.4<br>7. Given the reaction:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chemistry- Unit 8 DRA<br>11. Given the reaction:<br>$2C_2F_6 + 7 O_2 \rightarrow 4 CO_2 + 6 H_2O$<br>What is the total number of CO <sub>2</sub> molecules produced<br>when one mole of $C_2F_6$ is consumed?<br>A) 6 Go 2 + 10 <sup>29</sup><br>B) 2(5 O 2 + 10 <sup>29</sup> )<br>C) 3(5 O 2 + 10 <sup>29</sup> )<br>C) 3(5 O 2 + 10 <sup>29</sup> )<br>D) 4(4 O 2 + 10 <sup>29</sup> )<br>12. Given the reaction:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FT 34<br>15. Given the balanced equation:<br>$K_{CO_2} + 8aC_1 \rightarrow 2X + 8aC_2$ ,<br>What is the correct formula for the product represented<br>by the letter X?<br>A) KCO_<br>B) KCI<br>C) K<br>D) C1<br>17. Given the equation:<br>$Zn + 2 HCI \rightarrow 2nCl_2 + H_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ermistry- Unit 8 DR<br>1. Given the equation:<br>$6 CO_2(g) + 6 H_2O(f) \rightarrow C_gH_2O_2(g) + 6 O_2(g)$ .<br>measured at STP, needed to produce 320 grans of<br>oxygen?<br>A) 2641 C) 1921<br>B) 3201 D) 2241<br>C) 1921<br>C) 2201 D) 2241<br>C) 1921<br>C) 1921 | CAFT 33<br>Unit 9 Stoichiometry<br>6. Given the reaction<br>$N_{1}(g) + 3 H_{2}(g) \rightarrow 2 NH_{3}(g)$<br>How many liters of ammonia, measured at STP, are<br>produced when 28 organis of inflorger is completely<br>consume?<br>A) 44.8 C) 11.2<br>B) 5.60 D) 22.4<br>() Given the reaction:<br>2 CyH <sub>44</sub> (g) + 25 O <sub>2</sub> (g) $\rightarrow$ 16 CO <sub>2</sub> (g) + 18 H <sub>2</sub> O(g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Chemistry- Unit 8 DRA<br>11. Given the reaction:<br>$2C_2t_6 + 7 O_2 \rightarrow 4 CO_2 + 6 H_2O$<br>What is the total number of CO <sub>2</sub> molecules produced<br>when one mole of $C_2t_6$ is consumed?<br>A) 662 × 10 <sup>29</sup><br>B) 2(5.02 × 10 <sup>29</sup> )<br>C) 3(602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FT 34<br>15. Given the balanced equation:<br>$K_{CO_4} + 8aC_1 \rightarrow 2X + 8aC_0$ ,<br>What is the correct formula for the product represented<br>by the letter X?<br>A) KCO,<br>B) KCI<br>C; K<br>D) C1<br>17. Given the equation:<br>$Zn + 2 HCI - 2nCL_2 + H_2$<br>How many moles of HCW would be required to produce a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| emistry- Unit 8 DR<br>1. Given the equation:<br>$f CO_{2}(g) + 6H_{2}O(f) \rightarrow C_{g}H_{12}O_{g}(g) + 6 O_{2}(g)$<br>What is the minimumber of kilers of CO <sub>2</sub> (g).<br>What is the minimum number of kilers of CO <sub>2</sub> (g).<br>measured at STP, needed to produce 32.0 grams of<br>avygen?<br>A) 264 C, 192.L<br>B) 32.0 L D) 22.4 L<br>2. Given the unbalanced equation:<br>$\_Mg(ClO_{2}(g) + o_{2}(g)) + MgCL_{2}(g) + O_{2}(g)$<br>What is the coefficient of O, when the equation is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Curit 9       Staichiometry         6. Given the reaction $N_2(g) + 3 H_2(g) - 2 NH_3(g)$ How many filers of ammonia, measured at STP, are produced when 28.0 grams of inflorgers is completely consumer?       A) 44.8         A) 44.8       C) 11.2         B) 5.00       D) 22.4         C) Given the reaction: $2 (H_{H_0}(g) + 25 O_2(g) \rightarrow 16 CO_2(g) + 18 H_2O(g))$ Wrat volume of $C_2(H_0(g))$ will completely react to produce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chemistry- Unit 8 <b>DRA</b><br>11. Given the reaction:<br>$2C_2H_2 + 7 O_2 \rightarrow 4 CO_2 + 6 H_2O$<br>What is the total number of CO <sub>2</sub> notecules produced<br>when one mole of $C_2H_2$ is consumed?<br>A) 602 × 10 <sup>20</sup><br>B) 2502 × 10 <sup>20</sup><br>C) 316.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FT 34<br>16. Given the balanced equation:<br>$K_{CO} + 8aC_{1} \rightarrow 2X + 8aC_{2}$<br>What is the correct formula for the product represented<br>by the later X2<br>A) KC1<br>C) K<br>D) C1<br>17. Given the equation:<br>$Zn + 2 HC1 \rightarrow ZnC_{1} + H_{2}$<br>How many moles of HC1 would be required to produce a<br>total of 2 moles of HC2 would be required to produce a<br>total of 2 moles of HC2 would be required to produce a<br>total of 2 moles of HC2 would be required to produce a<br>total of 2 moles of HC2 would be required to produce a<br>total of 2 moles of HC2 would be required to produce a<br>total of 2 moles of HC2 would be required to produce a<br>total of 2 moles of HC2 would be required to produce a<br>total of 2 moles of HC2 would be required to produce a<br>total of 2 moles of HC2 would be required to produce a<br>total of 2 moles of HC2 would be required to produce a<br>total of 2 moles of HC2 would be required to produce a<br>total of 2 moles of HC2 would be required to produce a<br>total of 2 moles of HC2 would be required to produce a<br>total of 2 moles of HC2 would be required to produce a<br>total of 2 moles of HC2 would be required to produce a<br>total of 2 moles of HC2 would be required to produce a<br>total of 2 moles of HC2 would be required to produce a<br>total of 2 moles of HC2 would be required to produce a<br>total of 2 moles of HC2 would be required to produce a<br>total of 2 moles of HC2 would be required to produce a<br>total of 2 moles of HC2 would be required to produce a<br>total of 2 moles of HC2 would be required to produce a<br>total of 2 moles of HC2 would be required to produce a<br>total of 2 moles of HC2 would be required to produce a<br>total of 2 moles of HC2 would be required to produce a<br>total of 2 moles of HC2 would be required to produce a<br>total of 2 moles of HC2 would be required to produce a<br>total of 2 moles of HC2 would be required to produce a<br>total of 2 moles of HC2 would be required to produce a<br>total of 2 moles of HC2 would be required to produce a<br>total of 2 moles of HC2 would be required to produce a<br>total of 2 moles of HC2 wou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ermistry- Unit 8 DR<br>1. Given the equation:<br>$6 CO_2(g) + 6 H_2O(h) \rightarrow C_g H_2O_2(g) + 6 O_2(g).$ What is the minimum number of liters of CO_2(g).<br>massured at STP, needed to produce 320 grans of<br>oxygen?<br>A) 264( C) 192(<br>B) 32.0( D) 22.4(<br>C) 192(C) 20.2(g) + 0.4(g)(C) + 0.2(g).<br>C) 22.4(C) 192(C) + 0.2(g)(C) + 0.2                                                                                                                                                                                                                                                                                                                                                                                                            | <b>2XAFT</b> 33<br>Unit 9 Stoichiometry<br>6. Given the reaction<br>$N_{1}(g) + 3 H_{1}(g) \rightarrow 2 NH_{3}(g)$<br>How many liters of ammonia, measured at STP, are<br>produced when 280 grams of inflorger is completely<br>consume?<br>A) 44.8 C) 11.2<br>B) 5.00 D) 22.4<br>7. Given the reaction:<br>$2 C_{1}H_{4}(g) + 25 O_{2}(g) \rightarrow 15 CO_{3}(g) + 18 H_{2}O(g)$<br>What volume of $C_{1}H_{4}(g)$ will completely react to produce<br>exactly 36 lites of $H_{2}(g)$ ?<br>A) 27 L C) 36 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chemistry- Unit 8 <b>DRA</b><br>11. Given the reaction:<br>$2C_2t_6 + 7 O_2 \rightarrow 4 CO_2 + 6 H_2O$<br>What is the total number of CO <sub>2</sub> molecules produced<br>when one mole of $C_2t_6$ is consumed?<br>A) 662 × 10 <sup>29</sup><br>B) 2(5.02 × 10 <sup>29</sup> )<br>C) 3(602 × 10 <sup>29</sup> )<br>C) 3(6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FT 34<br>15. Given the balanced equation:<br>$K_{CO_4} + 8aC_1 \rightarrow 2X + 8aC_0$ ,<br>What is the correct formula for the product represented<br>by the letter X?<br>A) KCO<br>B) KCI<br>C) K<br>D) C1<br>17. Given the equation:<br>$Zn + 2 HCI \rightarrow 2nCL_2 + H_2$<br>How many moles of HCI would be required to produce a<br>total of Z moles of H.?<br>A) 0.6 C (3<br>B) 2 C) 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ermistry- Unit 8 DR<br>1. Given the equation:<br>$6 CO_2(g) + 6 H_2O(h) \rightarrow C_gH_2O_2(g) + 6 O_2(g)$ .<br>What is the minimum number of liters of $CO_2(g)$ .<br>massured at STP, needed to produce 320 grans of<br>axgen(P)<br>A) 264( C) 192(<br>B) 32.0( D) 22.4(<br>C) 192(C) 20.2(g) + $D_2(g)$<br>C) Given the unbalanced equation:<br>$-Mg(ClO_3)_2(g) \rightarrow -MgCl_2(g) + -O_2(g)$ .<br>What is the coefficient of O <sub>2</sub> when the equation is<br>balanced correctly using the smallest whole number<br>coefficients(P)<br>A) 1 (C) 3<br>B) 2 (D) 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MAFT       33         Unit 9       Stoichiometry         6. Given the reaction $N_r(g) + 3 H_r(g) - 2 NH_r(g)$ How many liters of ammonia, measured at STP, are produced when 280 grame of inflorger is completely consume?       A) 44.8         A) 44.8       C) 11.2         B) 5.00       D) 22.4         7. Given the reaction: $2  G_H_{ur}(g) + 25  O_r(g) \to 16  CO_r(g) + 18  H_rO(g)$ What volume of $C_r H_u(g)$ will completely react to produce exactly 36 liters of $H_rO(g)$ ?         More and $H_rO(g)$ Mate volume of $V_rO(g)$ ?         A) 27 L       C) 36 L         B) 2.0 L       D) 4.0 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chemistry- Unit 8 DRAM<br>11. Given the reaction:<br>$2C_2t_9 + 7 O_2 \rightarrow 4 CO_2 + 6 H_2O$<br>What is the total number of CO <sub>2</sub> molecules produced<br>when one mole of $C_2t_1$ is consumed?<br>A) 602 × 10 <sup>29</sup><br>B) 2602 × 10 <sup>29</sup><br>C) 3602 × 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FT 34<br>16. Given the balanced equation:<br>$K_{CO_4} + 8aC_1 \rightarrow 2X + 8aCO_1$<br>What is the correct formula for the product represented<br>by the letter X?<br>A) KCO_<br>B) KCO<br>C) K<br>D) C1<br>17. Given the equation:<br>$Zn + 2 HCI \rightarrow 2nCU_2 + H_2$<br>How many moles of HCI would be required to produce a<br>total of Z moles of HCI would be required to produce a<br>total of Z moles of HCI would be required to produce a<br>total of Z moles of HCI would be required to produce a<br>total of Z moles of HCI would be required to produce a<br>total of Z moles of HCI would be required to produce a<br>total of Z moles of HCI would be required to produce a<br>total of Z moles of HCI would be required to produce a<br>total of Z moles of HCI would be required to produce a<br>total of Z moles of HCI would be required to produce a<br>total of Z moles of HCI would be required to produce a<br>total of Z moles of HCI would be required to produce a<br>total of Z moles of HCI would be required to produce a<br>total of Z moles of HCI would be required to produce a<br>total of Z moles of HCI would be required to produce a<br>total of Z moles of HCI would be required to produce a<br>total of Z moles of HCI would be required to produce a<br>total of Z moles of HCI would be required to produce a<br>total of Z moles of HCI would be required to produce a<br>total of Z moles of HCI would be required to produce a<br>total of Z moles of HCI would be required to produce a<br>total of Z moles of HCI would be required to produce a<br>total of Z moles of HCI would be required to produce a<br>total of Z moles of HCI would be required to produce a<br>total of Z moles of HCI would be required to produce a<br>total of Z moles of HCI would be required to produce a<br>total of Z moles of HCI would be required to produce a<br>total of Z moles of HCI would be required to produce a<br>total of Z moles of HCI would be required to produce a<br>total of Z moles of HCI would be required to produce a<br>total of Z moles of HCI would be required to produce a<br>total of Z moles of HCI would be required to produce a<br>total of Z moles of H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ermistry- Unit 8 DR<br>1. Given the equation:<br>$6 CO_2(g) + 6 H_2O(h) \rightarrow C_g H_2O_2(g) + 6 O_2(g)$<br>What is the minimum number of liters of $CO_2(g)$ .<br>massured at STP, needed to produce 32.0 grans of<br>aygen(P)<br>A) 28.4 C) 192.4<br>B) 32.0 L) 22.4<br>C) Strent the unbalanced equation:<br>$-Mg(ClO_2)_2(g) \rightarrow -MgCL_2(g) + -O_2(g)$ .<br>What is the coefficient of $O_2$ when the equation is<br>balanced correctly using the smallest whole number<br>$ayden(P) = D_2$ D) 4<br>C) Given the reaction:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Wrif 9       Stoichiometry         0. Given the reaction $N_1(g) + 3 H_1(g) + 2 NH_3(g)$ Now many liters of ammonia, measured at STP, are produced when 280 grame of nitrogen is completely consume?       A) 44.8       C) 11.2         B, 50.0       D) 22.4       D) 22.4         O. Given the reaction $2 (H_{44}(g) + 25 O_2(g) \to 16 CO_2(g) + 18 H_2O(g))$ What volume of $C_1 H_4(g)$ will completely react to produce exactly 36 liters of $H_2O(g)$ ?         A) 2.1 C       C) 36 5L         B) 2.0 L       D) 4.0 L         8. Given the equation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Chemistry- Unit 8 DRAM<br>11. Given the reaction:<br>$2C_2t_3 + 7 O_2 \rightarrow 4 CO_3 + 6 H_2O$<br>What is the total number of CO <sub>2</sub> molecules produced<br>when one mole of $C_2t_3$ is consumed?<br>$A = 26 O Z + 10^{29}$<br>$B = 26 O Z + 10^$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FT 34<br>16. Given the balanced equation:<br>$K_{CO_4} + BaC_1 \rightarrow 2X + BaCO_1$<br>What is the correct formula for the product represented<br>by the letter X?<br>A) KCO_<br>B) KCO<br>C) K<br>D) C1<br>17. Given the equation:<br>$Zn + 2 HCI \rightarrow 2nCU_5 + H_2$<br>How many moles of HCI would be required to produce a<br>total of Z moles of H.?<br>A) 0.6 () 3<br>D) 2 () 3<br>D) 2 () 3<br>D) 2 () 4<br>18. Given the balanced equation:<br>$Fe(s) + CuSO_4(aq) \rightarrow FeSO_4(aq) + Cu(a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ermistry- Unit 8 DR<br>1. Given the equation:<br>$6 CO_2(g) + 6 H_2O(h) \rightarrow C_0 H_1O_2(g) + 6 O_2(g)$<br>measured at STP, needed to produce 32.0 grans of<br>oxygen?<br>A) 2641 C) 192 L<br>B) 32.0 D) 22.4 L<br>C) Unit be unbalanced equation:<br>$-Mg(ClO_2)_2(g) \rightarrow -MgCL_2(g) + -O_2(g)$<br>What is the coefficient of O, when the equation is<br>balanced correctly using the smallest whole number<br>coefficients?<br>A) 1 C) 3<br>B) 2 D) 4<br>C) Given the reaction:<br>$6 CO_2 + 6 H_2 - O_2 + 6 D.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Market State       33         Market State       Statechlometry         a Gwein the reaction $N_2(g) + 3 H_2(g) - 2 N H_3(g)$ A deal $N_2(g) + 3 H_2(g) - 2 N H_3(g)$ How many lifers of ammonia, measured at STP, are produced when 2.0 grams of inflorage is completely consume?         A) 44.8       C) 111.2         B) 50.0       D) 224.4         C) Gwein the reaction       D) 224.4         Gibles of H_2(G)(P) = 16 CO_2(g) + 18 H_2(G)       Market State St                                                                                                                                                                                                                                                                                                                                                                                          | Chemistry- Unit 8 DRAM<br>11. Given the reaction:<br>$2C_{2}F_{4} > 7 O_{2} \rightarrow 4 CO_{2} + 6 H_{2}O$<br>What is the total number of CO <sub>2</sub> molecules produced<br>when one mole of $C_{2}F_{4}$ is consumed?<br>A) 662 × 10 <sup>23</sup><br>B) 2(5.02 × 10 <sup>25</sup> )<br>C) 3(602 × 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FT 34<br>16. Given the balanced equation:<br>$K_{CO_{2}} + 8aC_{1} \rightarrow 2X + 8aC_{2}$ ,<br>What is the correct formula for the product represented<br>by the letter X?<br>A) KCO_{2}<br>B) KCI<br>C) K<br>D) Cl<br>17. Given the equation:<br>$Zn + 2 HCI \rightarrow 2nCL_{2} + H_{2}$<br>How many moles of HCI would be required to produce a<br>total of Z moles of H.?<br>A) 0.5 () 3<br>B) 2 () 3<br>B) 2 () 3<br>B) 2 () 4<br>18. Given the balanced equation:<br>$Fe(s) + CuSO_{2}(ac) \rightarrow FeSO_{2}(ac) + Cu(s)$<br>What total mass of ino in necessary to produce 1.00<br>mole of coper?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ermistry- Unit 8 DR<br>1. Given the equation:<br>$6 CO_2(g) + 6 H_2O(h) \rightarrow C_0 H_1O_2(g) + 6 O_2(g)$<br>What is the minimum number of liters of $CO_2(g)$ .<br>measured at STP, needed to produce 32.0 grans of<br>0 xygen?<br>A) 264 C) 192 L<br>B) 32.0 D) 22.4 L<br>C) 193 L<br>C) 193 L<br>C) 193 L<br>C) 193 L<br>C) 194 L<br>$-Mg(ClO_2/g6) \rightarrow -MgC_2(g) + -O_2(g)$<br>What is the coefficient of $O_2$ when the equation is<br>balanced correctly using the smallest whole number<br>coefficients?<br>A) 1 C) 3<br>B) 2 D) 4<br>C) Given the reaction:<br>$6 CO_2 + 6 H_2O - C_2 H_{12}O_2 + 6 O_2$<br>What is the local number of moles of water meeded to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MART       33         More 19       Statchlometry         a. Given the reaction $N_1(g) \rightarrow 2 N N_2(g)$ A. Given the reaction $N_2(g) \rightarrow 3 H_2(g) \rightarrow 2 N N_2(g)$ How many lifers of ammonia, measured at STP, are produced when 2.0 grams of inflorgen is completely consume?         A) 4.8       C) 11.2         B) 5.0       D) 22.4         A. Given the reaction       D) 22.4         J. Given the reaction       D) 22.6         J. Given the reaction: $2 (H_{40}(g) + 25 O_2(g) \rightarrow 15 CO_2(g) + 18 H_2O(g))$ Mint volume of $C_1 H_2(g)$ will completely react to produce exactly 36 lites of $H_2O(g)$ ?         A) 2.0       D) 4.0 L         Given the equation: $2 (H_{40} + 13 O_2 \rightarrow 8 CO_2 + 10 H_2O)$ How many moles of carbon dioxide are produced for each of obtaine of the obtaine consumer?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Chemistry- Unit 8 DRAI<br>11. Given the reaction:<br>$2C_2t_3 + 7 O_2 \rightarrow 4 CO_3 + 6 H_2O$<br>What is the total number of CO_3 molecules produced<br>when one mole of $C_2t_3$ is consumed?<br>A) 662 × 10 <sup>23</sup><br>B) 2(5.02 × 10 <sup>25</sup> )<br>C) 3(602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FT 34<br>16. Given the balanced equation:<br>$K_{CO}(*8aCL \rightarrow 2X*8aCO_{1}$<br>What is the correct formula for the product represented<br>by the latter X?<br>A) KCO<br>B) KCI<br>C) K<br>D) Cl<br>17. Given the equation:<br>$Zn + 2 HCI \rightarrow ZnCU_{2} + H_{2}$<br>How many moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ermistry- Unit 8 DR<br>1. Given the equation:<br>$6 CO_2(g) + 6 H_2O(h) \rightarrow C_gH_1O_2(g) + 6 O_2(g)$<br>measured at STP, needed to produce 32.0 grans of<br>oxygen?<br>A) 2641 C) 192 L<br>B) 32.0 D) 22.4 L<br>2. Given the unbalanced equation:<br>$-Mg(ClO_2)_2(g) \rightarrow -MgCL_2(g) + -O_2(g)$ .<br>What is the coefficient of $O_2$ when the equation is<br>balanced correctly using the smallest whole number<br>coefficients?<br>A) 1 C) 3<br>B) 2 D) 4<br>3. Given the reaction:<br>$6 CO_2 + 6 H_2O - C_2 H_2O_2 + 6 O_2$<br>What is the local number of moles of water needed to<br>mate 2.5 moles of $C_2 H_2O_2$ C) 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | YMET       33         More 19       Statchlometry         a. Given the reaction $N_1(g) \rightarrow 2 N_1^2(g)$ A. Sine in the reaction $N_2(g) \rightarrow 3 H_2(g) \rightarrow 2 N_1^2(g)$ How many lifers of ammonia, measured at STP, are produced when 2.0 grame of inflorgen is completely composed on the 2.0 grame of inflorgen is completely composed on the 2.0 grame of inflorgen is completely composed on the 2.0 grame of inflorgen is completely completely react to produce exactly 36 liters of $N_2^1(g)(y)$ will completely react to produce exactly 36 liters of $N_2^1(g)(y)$ will completely react to produce exactly 36 liters of $N_2^1(g)(y)$ will completely react to produce exactly 36 liters of $N_2^1(g)(y)$ will completely react to produce exactly 36 liters of $N_2^1(g)(y)$ will completely react to produce exactly 36 liters of $N_2^1(g)(y)$ will completely react to produce exactly 36 liters of $N_2^1(g)(y)$ will completely react to produce exactly 36 liters of $N_2^1(g)(y)$ will completely react to produce exactly 36 liters of $N_2^1(g)(y)$ will completely react to produce exactly 36 liters of $N_2^1(g)(y)$ will completely react to produce exactly 36 liters of $N_2^1(g)(y)$ will completely react to produce exactly 36 liters of $N_2^1(g)(y)$ will completely react to produce exactly 36 liters of $N_2^1(g)(y)$ will completely react to produce exactly 36 liters of $N_2^1(g)(y)$ will completely react to produce exactly 36 liters of $N_2^1(g)(y)$ will completely react to produce exactly 36 liters of $N_2^1(g)(y)(y)(y)(y)(y)(y)(y)(y)(y)(y)(y)(y)(y)$                                                                                                                                                                                                                                                                                                                                                                                          | Chemistry- Unit 8 DRAI<br>11. Given the reaction:<br>$2C_{2}f_{0} + 7 O_{2} \rightarrow 4 CO_{2} + 6 H_{2}O$<br>What is the total number of CO_{2} molecules produced<br>when one mole of $C_{2}f_{0}$ is consumed?<br>A) 66 02 × 10 <sup>27</sup><br>B) 26 02 × 10 <sup>27</sup><br>C) 3(602 × 10 <sup>27</sup> )<br>C) 3(602 × 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FT 34<br>16. Given the balanced equation:<br>$K_{CCQ} + 8aC_{1} \rightarrow 2X + 8aC_{2}$ ,<br>What is the correct formula for the product represented<br>by the later X2<br>A) KC2<br>B) KC1<br>C) K<br>D) C1<br>17. Given the equation:<br>$Zn + 2 HC1 \rightarrow ZnC_{1} + H_{2}$<br>How many moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ermistry- Unit 8 DR<br>1. Given the equation:<br>$6 CO_2(g) + 6 H_2O(h) \rightarrow C_g H_{12}O_4(g) + 6 O_2(g).$ $measured at STP, needed to produce 32.0 grans of oxygon? A) 2841 C, 1921 B) 32.0 L D) 22.4 L C. Given the unbalanced equation: -Mg(ClO_3/cg) \rightarrow -MgCL_2(g) + -O_2(g). What is the coefficient of O_2 when the equation is balanced correctly using the smallest whole number coefficients?A) 1 C, 3 B) 2 D JC. Given the reaction:6 CO_2 + 6 H_2O - C_2 H_{12}O_4 + 6 O_2 What is the local number of moles of water needed to mate 2.5 moles of C_2 H_{12}O_2?A) 1 C, 2 D, 4 H_2O - C_2 H_{12}O_4 + 6 O_2$ What is the local number of moles of water needed to mate 2.5 moles of $C_2 H_{12}O_2$ ?<br>A) 1 C, 2 D, 3 B) - C, 2 S, 2 D, 4 C, 2 S, 2 D, 4 C, 2 S, 2 D, 4 C, 2 C, 2 C, 2 D, 4 C, 2 C, 2 S, 2 D, 4 C, 2 C, 2 C, 2 D, 4 C, 2 C, 2 S, 2 D, 4 C, 2 C, 2 D, 4                                                                                                                                                                                                                                                                                                                                                                                                                               | MARET       33         More 19       Statchiometry         a. Given the reaction $N_1(g) \rightarrow 2 N_1^2(g)$ A. Sum the reaction $N_2(g) \rightarrow 3 H_2(g) \rightarrow 2 N_1^2(g)$ How many lifers of ammonia, measured at STP, are produced when 2.80 grams of inflorgen is completely composed on the 2.00 grams of inflorgen is completely composed on the 2.00 grams of inflorgen is completely completely composed on the 2.00 grams of inflorgen is completely completely completely react to produce exactly 36 liters of $N_2(0g)(g) \rightarrow 16 CO_2(g) + 18 H_2(0)(g)$ A. Sum the reaction: $2 G_1H_{10}(g) \rightarrow 16 CO_2(g) + 18 H_2(0)(g)$ More many moles of carbon dioxide are produced for each of $N_2(0g)(g) \rightarrow 16 CO_2(g) + 10 H_2(g)$ Given the requalition: $2 G_1H_{10} + 13 G_2 \rightarrow 8 CO_2 + 10 H_2(g)$ How many moles of carbon dioxide are produced for each of botade are produced for each of the diagram completely com                                                                                                                                                                                                  | Chemistry- Unit 8<br>The function:<br>11. Given the reaction:<br>$2C_2f_2 + 7 O_2 \rightarrow 4 CO_2 + 6 H_2O$<br>What is the total number of CO_2 notecules produced<br>when one mole of $C_2f_1$ is consumed?<br>A ( $20 \times 10^{23}$ )<br>C) ( $36.02 \times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FT 34<br>16. Given the balanced equation:<br>$K_{CC}(x) + 8aC_{1} \rightarrow 2X + 8aC_{2}$ ,<br>What is the correct formula for the product represented<br>by the later X?<br>A) KCi<br>B) KCi<br>C) K<br>D) Cl<br>17. Given the equation:<br>$Xn + 2 HCI \rightarrow 2nC_{1} + H_{2}$<br>How many moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce 1.00<br>mole of cooper?<br>A) 112 g C) 55.8 g<br>D) 102 g<br>19. Given the balanced equation:<br>NaOH + HCI $\rightarrow$ NaO + NaO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ermistry- Unit 8<br>1. Given the equation:<br>$6 CO_2(g) + 6 H_2O(h) - C_gH_1O_2(g) + 6 O_2(g)$ $Mat is the minimum number of liters of CO_2(g). massured at STP, needed to produce 32.0 grans of oxygen? A) 2841 C) 192 L B) 32.0 C) 192 L B) 32.0 C) 192 L B) 32.0 C) 192 Z C. Given the unbalanced equation: -Mg(ClO_2)_2(g)MgCL_2(g) + -O_2(g). What is the coefficient of O2 when the equation is balanced orrectly using the smallest whole number coefficients?A) 1 C) 3B) 2 D) 4C. Given the reaction:6 CO_2 + 6 H_2O - C_2 H_2O_2 + 6 O_2 What is the local number of moles of water needed to mate 2.5 moles of C_2 H_2O_2 * (2.5 E) 6 0 C) 15C. Given the balanced equation:$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | YMET       33         More 19       Statchiometry         Image: State 10 amonia, measured at STP, are produced when 280 grame of infrogen is completely composed at STP, are produced when 280 grame of infrogen is completely composed at STP, are produced when 280 grame of infrogen is completely composed at STP, are produced when 280 grame of infrogen is completely composed at STP, are produced when 280 grame of infrogen is completely composed at STP, are produced when 280 grame of infrogen is completely composed at STP, are produced when 280 grame of infrogen is completely completely completely react to produce exactly 361 lites of H_2(0)(9) will completely react to produce exactly 361 lites of H_2(0)(9) will completely react to produce exactly 361 lites of H_2(0)(9) will completely react to produce exactly 361 lites of H_2(0)(9) will completely react to produce exactly 361 lites of H_2(0)(9) will completely react to produce exactly 361 lites of H_2(0)(9) will completely react to produce exactly 361 lites of H_2(0)(9) will completely react to produce exactly 361 lites of H_2(0)(9) will completely react to produce exactly 361 lites of H_2(0)(9) will completely react to produce exactly 361 lites of H_2(0)(9) will completely react to produce exactly 361 lites of H_2(0)(9) will completely react to produce exactly 361 lites of H_2(0)(9) will completely react to produce exactly 361 lites of H_2(0)(9) will completely react to produce exactly 361 lites of H_2(0)(9) will completely react to produce exactly 361 lites of H_2(0)(9) will completely react to produce exactly 361 lites of H_2(0)(9) will completely reactly at the produce exactly 361 lites of H_2(0) will completely reactly at the produce exactly 361 lites of H_2(0) will completely reactly at the produce exactly 361 lites of H_2(0) will completely reactly at the produce exactly 361 lites of H_2(0) will completely reactly at the produce exactly 361 lites of H_2(0) | Chemistry- Unit 8<br>The function of the reaction:<br>11. Given the reaction:<br>$2C_2f_2 + 7 O_2 \rightarrow 4 CO_2 + 6 H_2$<br>Must is the total number of CO_2 noticules produced<br>when one mole of $C_2f_1$ is consumed?<br>(a) $4602 + 10^2$<br>(b) $4602 + 10^2$<br>(c) $3602 + 10^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FT 34<br>16. Given the balanced equation:<br>$K_{CC}(x) + 8aC_{1} \rightarrow 2X + 8aC_{2}$ ,<br>What is the correct formula for the product represented<br>by the later X?<br>A) KC1<br>B) C1<br>17. Given the equation:<br>$Zn + 2 HC1 \rightarrow ZnC_{1} + H_{2}$<br>How many moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce 1.00<br>mole of cooper?<br>A) 112 g C) 55.8 g<br>B) 26.0 g D) 192 g<br>16. Given the balanced equation:<br>NaOH + HC1 → NaOH + H_5O<br>What is the total number of grams of H_0 produced when                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ermistry- Unit 8<br><b>C</b> (1) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23         2011 9       Statchiometry         6. Given the reaction $N_{2}(y) + 3 N_{2}(y) - 2 N N_{3}(y)$ A. Siven the reaction $N_{2}(y) + 3 N_{2}(y) - 2 N N_{3}(y)$ More many lifers of ammonia, measured at STP, are produced when 2.0 grams of infugers is completely composed at STP, are produced when 2.0 grams of infugers is completely composed at STP, are produced when 2.0 grams of infugers is completely composed at STP, are produced when 2.0 grams of infugers is completely completely completely composed at STP.         (A & B)       (C) 1 (1 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Chemistry- Unit 8<br>The reaction:<br>1. Given the reaction:<br>$2C_{2}f_{2} + 7 O_{2} \rightarrow 4 CO_{2} + 6 H_{2}$<br>Must is the total number of CO_{2}, noticulas produced<br>when one mole of $C_{2}f_{1}$ is consumed?<br>A ( $6 O_{2} + 10^{23}$ )<br>() $3(6 O_{2} + 10^{23})$<br>() $3(6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FT 34<br>16. Given the balanced equation:<br>$K_{CO} + 8aC_{1} \rightarrow 2X + 8aC_{2}$<br>What is the correct formula for the product represented<br>by the later X2<br>A) KC2<br>B) KC1<br>C) K<br>D) C1<br>17. Given the equation:<br>$Zn + 2 HC1 \rightarrow ZnC_{1} + H_{2}$<br>How many moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce a<br>total of 2 moles of HC1 would be required to produce 1.00<br>moles (copper)<br>A) 112 g () 5.8 g<br>B) 26.0 g () 102 g<br>19. Given the balanced equation:<br>MaOH + HC1 → NaO1 + H <sub>2</sub> O<br>What is the heigh number of grams of H_2 Oproduced when<br>115 grams of the produce, NaC1 is formed?<br>A) 9.0 () () 64.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ermistry- Unit 8<br><b>C</b> and the equation:<br>f(x) = (x + y)(x + y)(                                                                                                                                                                                                                                                                                                                                                                                                                              | 2011 9       Stoichiometry         0. Given the reaction $N(g) + 3 H_j(g) + 2 N H_j(g)$ 0. Given the reaction $N(g) + 3 H_j(g) + 2 N H_j(g)$ More many lifers of ammonia, measured at STP, are produced when 20 grams of infrogen is completely composed at STP, are produced when 20 grams of infrogen is completely composed at STP, are produced when 20 grams of infrogen is completely composed at STP, are produced when 20 grams of infrogen is completely composed at STP, are produced when 20 grams of infrogen is completely composed at STP.         (a) 44.8       (b) 12.2         (b) 50.0       (b) 22.2         (c) Given the reaction       (b) 20.1         (c) Given the reaction       (c) 30.1         (c) 20.1       (c) 30.1         (c) 20.1       (c) 30.2         (c) 20.1       (c) 40.2         (c) 20.1       (c) 40.2         (c) 20.1       (c) 40.2         (c) 20.1       (c) 40.2         (c) 20.2       (c) 40.2         (c) 20.1       (c) 40.2         (c) 20.2       (c) 40.2         (c) 20.2<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chemistry- Unit 8<br>The reaction:<br>1. Given the reaction:<br>$2C_{2}f_{2}+7O_{2}\rightarrow4CO_{2}+6H_{2}$<br>Must is the total number of CO <sub>2</sub> molecules produced<br>when one mole of $C_{2}f_{1}$ is consumed?<br>A ( $6C_{2} + 10^{23}$ )<br>() $3(602 + 10^{23})$<br>() $3(602 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FT 34<br>16. Given the balanced equation:<br>$K_{CO}(*8aCL \rightarrow 23*8aCO_{1}$<br>What is the correct formula for the product represented<br>by the latter X?<br>A) KCO<br>B) KCI<br>C) K<br>D) Cl<br>17. Given the equation:<br>$Zn + 2 HCI \rightarrow ZnCL_{2} + H_{2}$<br>How many moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce 1.00<br>moles (cooper)?<br>A) 112 g C) 55.8 g<br>B) 26.0 g D) 192 g<br>19. Given the balanced equation:<br>$NaOH + HCI \rightarrow NaOI + H_{2}O$<br>What is the total number of grams of H_Q produced when<br>116 grams of the product, NaCI is formed?<br>A) 9.0 g C) 54.9<br>B) 36.9 D) 19.2 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ermistry- Unit 8 CPR<br>1. Given the equation:<br>$6 CO_{2}(g) + 6 H_{2}O(h) \rightarrow C_{g}H_{12}O_{g}(g) + 6 O_{2}(g)$ What is the minimum number of liters of CO <sub>2</sub> (g),<br>measured at S17, needed to produce 32.0 grans of<br>arraygen?<br>A) 264 C, 192 L<br>B) 32.0 D) 22.4 L<br>2. Given the unbalanced equation:<br>$-Mg(ClO_{2}(g) + -MgCL_{2}(g) + -O_{2}(g)$ What is the coefficient (0 v, when the equation is<br>balanced correctly using the smallest whole number<br>coefficient?<br>A) 1 C, 3<br>B) 2 D) 4<br>3. Given the reaction:<br>$6 CO_{2} + 6 H_{2} - O_{2}(H_{2}O_{2} + 6 O_{2} - 0) + 4$ 3. Given the reaction:<br>$6 CO_{2} + 6 H_{2} - O_{2}(H_{2}O_{2} + 6 O_{2} - 0) + 16$ What is the total number of moles of valuer needed to<br>make 25 moles of C <sub>4</sub> H <sub>2</sub> O <sub>6</sub> ?<br>A) 12 C) 2.5<br>B) 6 D) 16<br>4. Given the balanced equation:<br>$2 C_{1}H_{2}(g) + 13 O_{2}(g) \rightarrow 8 CO_{2}(g) + 10 H_{2}(G)$ What is the total number of moles of C <sub>4</sub> (h) thotal must<br>react completely with 500 moles of C <sub>4</sub> (h) thotal must<br>react completely with 500 moles of C <sub>4</sub> (h) that must                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2011 9       Stochlometry         0. Given the reaction $M(g) \neq 3 H_j(g) + 2 NH_j(g)$ 1. Since the reaction $M(g) \neq 3 H_j(g) + 2 NH_j(g)$ 1. Some the reaction $M(g) \neq 3 H_j(g) + 2 NH_j(g)$ 1. Some the reaction $D_j$ 2. J A & B $D_j$ 9. J & B $D_j$ 1. Steen the reaction $D_j$ $Q_j = Q_j$ $D_j$ 1. Steen the reaction: $Q_j = Q_j$ $Q_j = Q_j$ $D_j$ 9. J $Q_j$ $D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Chemistry- Unit 8<br>The function is the total number of total number of the section is the total number of CQ, molecules produced when one mole of C4, is consumed?<br>A) 60.22 + 10 <sup>23</sup><br>B) 2(50.2 + 10 <sup>25</sup> )<br>C) 3(60.2 + 10 <sup>25</sup> )<br>C) 40.0 mole 3(10.2 + 10 <sup>25</sup> )<br>C) 40.0 mole 4(10.2 + 10 <sup>25</sup> )<br>C) 40.0 mole 4(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FT 34<br>16. Given the balanced equation:<br>$K_{CO}(*BaCL_{\rightarrow}2X*BaCC_{3}$<br>What is the correct formula for the product represented<br>by the latter X?<br>A) KCC_<br>B) KCI<br>C: K<br>D) Cl<br>17. Given the equation:<br>$Zn + 2 HCI \rightarrow ZnCL_{3} + H_{2}$<br>How many moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a total<br>total of 2 moles of HCI would be required to produce a total<br>total of 2 moles of HCI would be required to produce a total of 2 moles of HCI would be required to produce a total a<br>10 Given the balanced equation:<br>MaCH + HCI $\rightarrow$ MaCI + H <sub>2</sub> O<br>What is the hplan number of grams of H <sub>2</sub> O produced when<br>116 grams of Ube product, MaCI is formed?<br>A) 9.0 g C) 54.9<br>B) 38.9 D) 18.9<br>20. Given the reaction:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ermistry- Unit 8 CPR<br>1. Given the equation:<br>$6 CO_2(g) + 6 H_2O(f) \rightarrow C_gH_2O_4(g) + 6 O_2(g)$<br>measured at STP, needed to produce 32.0 grans of<br>arraygen?<br>A) 264 C, 192 L<br>B) 32.0 D) 22.4 C<br>2. Given the unbalanced equation:<br>$-Mg(ClO_2)_2(g) \rightarrow -MgCL_2(g) + O_2(g)$<br>What is the coefficient (0, when the equation is<br>balanced correctly using the smallest whole number<br>coefficients?<br>A) 1 C, 3<br>B) 2 D) 4<br>3. Given the reaction:<br>$6 CO_2 + 6 H_2 O_2 + 6 H_2$<br>What is the total number of moles of water needed to<br>mate 2.5 moles of $C_2 H_2 O_2$ ;<br>A) 12 C, 2.5<br>B) 6 D) 15<br>4. Given the balanced equation:<br>$2 C_1 H_2(g) + 13 O_2(g) \rightarrow 8 O_2(g) + 10 H_2O(g)$<br>What is the total number of moles of $O_2(g)$ that must<br>react completely with 5.00 moles of $O$                                                                                                                                                                                                                                                                                                          | 2017 2       Stochlometry         0. Given the reaction $h(g) \neq 3 H_j(g) + 2 NH_j(g)$ 0. Given the reaction $h(g) \neq 3 H_j(g) + 2 NH_j(g)$ More and Millers of ammonia, measured at STP, are produced when 28.0 grams of nitrogen is completely composed with 28.0 grams of nitrogen is completely completely completely react to produce exactly 38 lites of H_20(g) > 16 CO_2(g) + 18 H_20(g)         0. Given the reaction: $2 (H_{u}(g) + 25 O_{u}(g) - 51 CO_2(g) + 18 H_20(g))         Wind volume of C_{u}H_{u}(g) will completely react to produce exactly 38 lites of H_20(g) > 0 & 30 L         0. Given the reaction:       2 (H_{u}(g) + 25 O_{u}(g) - 51 CO_2(g) + 18 H_20(g))         0. Given the reaction:       2 (H_{u}(g) + 2) = 0 + 10 + 10 + 10 + 10 + 10 + 10 + 10 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chemistry- Unit 8<br>The function is the total number of Columbia produced when one mole O(2, 4) is consumed?<br>A) $(6.02 \times 10^{23})$<br>B) $(2(6.02 \times 10^{23}))$<br>B) $(2(6.02 \times 10^{23}))$<br>B) $(2(6.02 \times 10^{23}))$<br>C) $(3(6.02 \times 10^{23})))$<br>C) $(3(6.02 \times 10^{23})))$<br>C) $(3(6.02 \times 10^{23}))))$<br>C) $(3(6.02 \times 10^{23})))))$<br>C) $(3(6.02 \times 10^{23}))))))))))))))))))))))))))))))))))))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FT 34<br>16. Given the balanced equation:<br>$K_{CO}(*BaCL_{\rightarrow}2X*BaCC_{3}$<br>What is the correct formula for the product represented<br>by the latter X?<br>A) KCC_<br>B) KCI<br>C: K<br>D) Cl<br>17. Given the equation:<br>$Zn + 2 HCI \rightarrow ZnCL_{3} + H_{2}$<br>How many moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce 1.00<br>moles (cooper?<br>A) 112 g C) 5.8 s g<br>B) 26.0 g D) 192 g<br>13. Given the balanced equation:<br>$NaOH + HCI \rightarrow NaO(1 + H_2O$<br>What is the hplan number of grams of HQ produced when<br>116 grams of Use product, NaCl is formed?<br>A) 9.0 g C) 5.4 g<br>B) 3.8 g D) 18 g<br>20. Given the reaction:<br>$C_H H_{e}^* 12 O_{2} \rightarrow 8 CO_{2} + 8 H_{2}O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ermistry- Unit 8 PR<br>1. Given the equation:<br>$6 CO_2(g) + 6 H_2O(f) \rightarrow C_gH_2O_4(g) + 6 O_2(g)$<br>measured at STP, needed to produce 32.0 grans of<br>arraygen?<br>A) 264 C, 192 L<br>B) 32.0 D) 22.4 C<br>2. Given the unbalanced equation:<br>$-Mg(ClO_2)_4(g) \rightarrow -MgCL_2(g) + O_2(g)$ .<br>Multist the coefficient (0, when the equation is<br>balanced correctly using the smallest whole number<br>coefficients?<br>A) 1 C, 3<br>B) 2 D) 4<br>3. Given the reaction:<br>$6 CO_2 + 6 D_2 - C_2 H_2O_2 + 6 O_2$<br>What is the total number of moles of valuer needed to<br>make 25 moles of $C_4 H_2O_2$ ?<br>A) 12 C) 2.5<br>B) 6 D) 16<br>4. Given the balanced equation:<br>$2 C_1H_2(g) + 13 O_2(g) \rightarrow 8 O_2(g) + 10 H_2O(g)$<br>What is the total number of moles of $O_2(g)$ that must<br>react completely with 500 moles of $O_2(g)$ that must                                                                                                                                                                                                                                                                                                           | $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chemistry- Unit 8<br>The reaction:<br>1. Given the reaction:<br>$2C_{1}f_{1} + 7 O_{1} \rightarrow 4 CO_{2} + 6 H_{2}$<br>What is the total number of CO_{2} noticulas produced when one mole of $C_{1}f_{1}$ is consumed?<br>A ( $6Q \ge 10^{23}$ )<br>() $3(6Q \ge 10^{23})$<br>() $3(6Q \ge 10^{23})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FT 34<br>16. Given the balanced equation:<br>$K_{CO}(*BaCL_{2}2*BaCC_{-}Marching)$<br>What is the correct formula for the product represented<br>by the latter X?<br>A) KCC_<br>B) KCT<br>C: K<br>D) Cl<br>17. Given the equation:<br>$Zn + 2 HCI \rightarrow ZnCL_{1} + H_{2}$<br>How many moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce 1.00<br>mole of cooper?<br>A) 112 g C) 55.8 g<br>B) 26.0 g D) 182 g<br>19. Given the balanced equation:<br>MaCH + HCI $\rightarrow$ NaCI + H <sub>2</sub> O<br>What is the topical moles of H <sub>2</sub> O are produced when 115 grams of H <sub>2</sub> O are produced when 112 liters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ermistry- Unit 8 PR<br>1. Given the equation:<br>$6 CO_2(g) + 6 H_2O(f) \rightarrow C_gH_2O_4(g) + 6 O_2(g)$<br>measured at STP, needed to produce 32.0 grans of<br>arraygen?<br>A) 264 C, 192 L<br>B) 32.0 D) 22.4 C<br>2. Given the unbalanced equation:<br>$-Mg(ClO_2)_g(g) \rightarrow -MgCL_2(g) + O_2(g)$<br>What is the coefficient (0 c), when the equation is<br>balanced correctly using the smallest whole number<br>coefficients?<br>A) 1 C, 3<br>B) 2 D) 4<br>3. Given the teachine:<br>$6 CO_2 + 6 H_2 - O_2(H_2O_2 + O_2)$<br>What is the total number of moles of valuer needed to<br>make 25 moles of $C_gH_{2}O_2$ ?<br>A) 12 C) 2.5<br>B) 6 D) 16<br>4. Given the balanced equation:<br>$2 C_1H_q(g) + 13 O_2(g) \rightarrow 8 CO_2(g) + 10 H_2O(g)$<br>What is the total number of moles of $O_2(g)$ that must<br>recat completely with 500 moles of $O_2(h_2(g))$ the $H_2O(g)$<br>What is the total number of moles of $O_2(h_2(g))$ the $H_2O(g)$<br>What is the total number of moles of $O_2(h_2(g))$ the $H_2O(g)$<br>What is the total number of moles of $O_2(h_2(g))$ the $H_2O(g)$<br>What is the total number of moles of $O_2(h_2(g))$ the $H_2O(g)$<br>What is the total number of moles of $O_2(h_2(g))$ the $H_2O(g)$<br>What is the total number of moles of $O_2(h_2(g))$ the $H_2O(g)$<br>What is the reaction:<br>$2 C_1H_2(g) + 5 O_3(g) + 4 CO_3(g) + 2 H_2O(g)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YMET       33         More the reaction $M(g) \neq 3 H_j(g) + 2 NH_j(g)$ Image: The reaction $M(g) \neq 3 H_j(g) + 2 NH_j(g)$ More the reaction $M(g) \neq 3 H_j(g) + 2 NH_j(g)$ More the reaction $M(g) \neq 3 H_j(g) + 2 NH_j(g)$ More the reaction $D_j$ More the reaction:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chemistry- Unit 8 $DRAI$ 11. Given the reaction: $2C_{2}f_{2}+7O_{2} \rightarrow 4CO_{2}+6H_{2}$ What is the total number of CO_{2} molecules produced when one mole of CP_{4} is consumed? $A = 062 \times 10^{27}$ $B = 2(502 \times 10^{27})$ $C = 3(602 \times 10^{27})$ $C = 3(702 \times 10^{27})$ $C = 3($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FT 34<br>16. Given the balanced equation:<br>$K_{CO}(+8aCL_{-} + 2X+8aCO_{-})$<br>What is the correct formula for the product represented<br>by the latter X?<br>A) KCO_{-}<br>B) KCI<br>C. K<br>D) Cl<br>17. Given the equation:<br>$Zn + 2 HCI \rightarrow ZnCL_{1} + H_{2}$<br>How many moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce 1.00<br>mole of cooper?<br>A) 112 g C) 55.8 g<br>B) 26.0 g D) 182 g<br>13. Given the balanced equation:<br>MaCH + HCI $\rightarrow$ NaCI + H <sub>2</sub> O<br>What is the total number of grams of H <sub>2</sub> O produced when<br>116 grams of the product, NaCI is formad?<br>A) 8.0 g C) 54 g<br>B) 38 g D) 18 g<br>13. Given the reaction:<br>$C_{H_{2}} + 12 O_{2} \rightarrow 8 CO_{2} + 8 H_{2}O$<br>How many moles of H <sub>2</sub> O are produced when 11.2 lifers<br>of C <sub>1</sub> H <sub>2</sub> to moles of H <sub>2</sub> O are produced when 11.2 lifers<br>of C <sub>1</sub> H <sub>2</sub> to moles of H <sub>2</sub> O are produced when 11.2 lifers<br>of C <sub>1</sub> H <sub>2</sub> to moles of H <sub>2</sub> O are produced when 11.2 lifers<br>of C <sub>1</sub> H <sub>2</sub> to moles of H <sub>2</sub> O are produced when 11.2 lifers<br>of C <sub>1</sub> H <sub>2</sub> to moles of H <sub>2</sub> O are produced when 11.2 lifers<br>of C <sub>1</sub> H <sub>2</sub> to moles of H <sub>2</sub> O are produced when 11.2 lifers<br>of C <sub>1</sub> H <sub>2</sub> to moles of H <sub>2</sub> O are produced when 11.2 lifers<br>of C <sub>1</sub> H <sub>2</sub> to moles of H <sub>2</sub> O are produced when 11.2 lifers<br>of C <sub>1</sub> H <sub>2</sub> to moles of H <sub>2</sub> O are produced when 11.2 lifers<br>of C <sub>1</sub> H <sub>2</sub> to moles of H <sub>2</sub> O are produced when 11.2 lifers<br>of C <sub>1</sub> H <sub>2</sub> to moles of H <sub>2</sub> O are produced when 11.2 lifers<br>of C <sub>1</sub> H <sub>2</sub> to moles                                                                                     |
| ermistry- Unit 8 $PR$ 1. Given the equation: $6 CO_{2}(g) + 6 H_{2}O(f) \rightarrow C_{g}H_{1}O_{q}(g) + 6 O_{2}(g)$ What is the minimum number of liters of CO <sub>2</sub> (g), measured at STP, needed to produce 32.0 grams of oxygen? A) 264 C) 192 L B) 32.0 L D) 22.4 L C. Given the unbalanced equation: $-Mg(ClO_{2}(g) + -MgCL(g) + -O_{2}(g))$ What is the coefficient (10, when the equation is balanced correctly using the smallest whole number coefficient (20, when the equation is balanced correctly using the smallest whole number coefficient (20, when the equation is balanced correctly using the smallest whole number coefficient (20, when the equation is balanced correctly using the smallest whole number coefficient (20, when the equation is balanced correctly using the smallest whole number coefficient (20, a) (2, b) (4) C. Given the taclal number of moles of value needed to make 2.5 moles of $C_{4}H_{4}O_{6}$ ? A) 12 C) 2.5 B) 6.0 D) 15 C. Given the talanced equation: $2 C_{4}H_{4}(g) + 13 O_{4}(g) \rightarrow 8 O_{4}(g) + 10 H_{2}O(g)$ What is the total number of moles of $O_{4}(g)$ that must react completely with 5.00 moles of $C_{4}H_{4}(g)$ ? A) 3.2.5 C) 26.5 B) 2.0 D) 10.0 C. Given the reaction: $2 C_{4}H_{4}(g) + 5 O_{4}(g) + 4 CO_{4}(g) + 2 H_{2}O(g)$ What is the total number of grams of $O_{4}(g) + 2 H_{4}O(g)$ What is the total number of moles of $O_{4}(g)$ that must react completely with 5.00 moles of $O_{4}(g)$ that must react completely with 5.00 moles of $O_{4}(g)$ that must react completely with 5.00 moles of $O_{4}(g)$ that must react completely with 5.00 moles of $O_{4}(g)$ that must react completely with 5.00 moles of $O_{4}(g)$ that must react completely with 5.00 moles of $O_{4}(g)$ that must react completely with 5.00 moles of $O_{4}(g)$ that must react completely with 5.00 moles of $O_{4}(g)$ that is the total number of moles of $O_{4}(g)$ that must react completely with 5.00 moles of $O_{4}(g)$ that must react completely with 5.00 moles of $O_{4}(g)$ (Mat is the total number of moles of $O_{4}(g)$ that must react compl                                                                                                                                                                                                                                                                                                                                                                                                     | Year 9       Statehametry         1       Stateham                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chemistry- Unit 8<br><b>11.</b> Given the reaction:<br><b>12.</b> $2 \zeta_{1} \zeta_{2} + 7 Q_{2} \rightarrow 4 CQ_{2} + 6 H_{2}$<br><b>13.</b> Given the reaction:<br><b>13.</b> $2 \zeta_{2} + 10^{23}$<br><b>13.</b> $2 \zeta_{2} > 10^{23}$<br><b>13.</b> $2 \zeta_{2} > 20^{23}$<br><b>13.</b> Care in the reaction:<br><b>13.</b> Given the reaction:<br><b>13.</b> Given the reaction:<br><b>14.</b> $H_{2} + SQ_{2} \rightarrow 4NO + 8 H_{2}O$<br><b>13.</b> Given the reaction:<br><b>14.</b> $H_{1} + SQ_{2} \rightarrow 4NO + 8 H_{2}O$<br><b>13.</b> Given the reaction:<br><b>14.</b> $H_{1} + SQ_{2} \rightarrow 4NO + 8 H_{2}O$<br><b>14.</b> Given the reaction:<br><b>14.</b> $H_{1} + SQ_{2} \rightarrow 4NO + 8 H_{2}O$<br><b>15.</b> Given the reaction:<br><b>16.</b> Given the reaction:<br><b>17.</b> $2 N_{2} + 2 H_{2}O \rightarrow 2 NO H + H_{2}$<br><b>17.</b> Given the reaction:<br><b>17.</b> $2 N_{2} + 2 H_{2}O \rightarrow 2 NO H + H_{2}$<br><b>17.</b> Constant the reaction:<br><b>17.</b> $2 N_{2} + 2 H_{2}O \rightarrow 2 NO H + H_{2}$<br><b>17.</b> Constant the reaction:<br><b>17.</b> $2 N_{2} + 2 H_{2}O \rightarrow 2 NO H + H_{2}$<br><b>17.</b> Constant the reaction:<br><b>17.</b> $2 N_{2} + 2 H_{2}O \rightarrow 2 NO H + H_{2}$<br><b>17.</b> Constant the reaction:<br><b>17.</b> $2 N_{2} + 2 H_{2}O \rightarrow 2 NO H + H_{2}$<br><b>17.</b> Constant the reaction:<br><b>17.</b> $2 N_{2} + 2 H_{2}O \rightarrow 2 NO H + H_{2}$<br><b>17.</b> Constant the reaction:<br><b>17.</b> $2 N_{2} + 2 H_{2}O \rightarrow 2 NO H + H_{2}$<br><b>17.</b> Constant the reaction:<br><b>17.</b> $2 N_{2} + 2 H_{2}O \rightarrow 2 NO H + H_{2}$<br><b>17.</b> Constant the reaction:<br><b>17.</b> $2 N_{2} + 2 H_{2}O \rightarrow 2 NO H + H_{2}$<br><b>17.</b> Constant the reaction:<br><b>17.</b> $2 N_{2} + 2 H_{2}O \rightarrow 2 NO H + H_{2}$<br><b>17.</b> Constant the reaction:<br><b>17.</b> Constant the reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FT 34<br>16. Given the balanced equation:<br>$K_{CO}(+8aC_{L} \rightarrow 2X+8aC_{D},$<br>What is the correct formula for the product represented<br>by the latter X?<br>A) KCO <sub>3</sub><br>B) KCI<br>C) K<br>D) Cl<br>17. Given the equation:<br>$Zn + 2 HCI \rightarrow ZnCL_{1} + H_{2}$<br>How many moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>total of 2 moles of HCI would be required to produce a<br>10. Sitem the balanced equation:<br>NaCH + HCI $\rightarrow$ NaCI + H <sub>2</sub> O<br>What is the total balanced equation:<br>$R_{1}H_{2} = C_{1} \leq 5.8 \text{ g}$<br>B) $3.0 \text{ g}$ C) $5.4 \text{ g}$<br>B) $3.0 \text{ g}$ C) $5.4 \text{ g}$<br>B) $3.0 \text{ g}$ D) $18 \text{ g}$<br>10. Given the reaction:<br>$C_{1}H_{4} + 12 O_{2} \rightarrow 8 CO_{2} + 8 H_{2}O$<br>How many moles of H <sub>2</sub> O are produced when 11.2 liters<br>$C_{1}H_{4} \text{ sets}$ . measured at STP, reacts completely?<br>A) $0.0 C = 3.0.0$<br>B) $10.0 D = 0.4.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Page 1

Chemistry- Unit 9

DRAFT

25

Chemistry- Unit 9

DRAFT

26

Page 2







Chemistry- Unit 11 DRAFT

 What is the H<sub>3</sub>O<sup>+</sup> ion concentration of a solution that has an OH<sup>-</sup> ion concentration of 1.0 × 10<sup>-3</sup> M? Acids and Bases Both HNO<sub>3</sub>(aq) and CH<sub>3</sub>COOH(aq) can be classified as Unit 13 1. Which compound is an electrolyte? (A)C<sub>6</sub>H<sub>12</sub>O<sub>6</sub> (C)CH<sub>3</sub>OF 8. Given the neutralization reaction: (A) Arrhenius acids that turn blue litmus red (B) Arrhenius bases that turn blue litmus red (C) Arrhenius acids that turn red litmus blue (D) Arrhenius bases that turn red litmus blue (C) CH<sub>3</sub>OH (D) CCl<sub>4</sub> (A)  $1.0 \times 10^{-3}$ M (B)  $1.0 \times 10^{-7}$ M (C)  $1.0 \times 10^{-11}$ M (D)  $1.0 \times 10^{-14}$ M  $H_2SO_4 + 2 \text{ KOH} \rightarrow K_2SO_4 + 2 \text{ HOH}$ (B) CaCl, Which compound is a salt? (A)KOH (C)K<sub>2</sub>SO<sub>4</sub> According to the Arrhenius theory, when a base dissolves in water it produces (A)CO<sub>3</sub><sup>2-</sup> as the only negative ion in solution (A)KOH A student records the following observations about an unknown solution: (B)H2SO4 (D)HOH What is the H<sup>\*</sup> ion concentration of an aqueous solution in which the OH<sup>-</sup> ion concentration is × 10<sup>-7</sup> mole per liter?
 (A) 1 × 10<sup>-14</sup> M
 (B) 1 × 10<sup>-12</sup> M (B) OH as the only negative ion in solution 9. An aqueous solution of an ionic compound turns conducts electricity
 turns blue litmus red (C) NH, as the only positive ion in solution red litmus blue, conducts electricity, and reacts with an acid to form a salt and water This compound could be (D)H<sup>+</sup> as the only positive ion in solution 3 Which substance is an Arrhenius acid? The student should conclude that the unknown (A)HCI (C)KNO. (C)1 × 10-9 M (A)NH<sub>3</sub> (B)KOH (C) HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> (D) CH<sub>3</sub>OH solution is most likely (B) Nal (D)1 × 10<sup>-2</sup> M (D)LIOH (A)an acid (C) an ester When hydrochloric acid is neutralized by sodium hydroxide, the salt formed is sodium (A) hydrochlorate (C) chloride If a solution has a hydronium ion concentration of 1 × 10<sup>-9</sup> M, the solution is (B) a base (D) an alcohol 4. The pH of a 0.1 M solution is 11. What is the concentration of H<sub>3</sub>O<sup>\*</sup> ions, in moles per liter?
 (A) 1 × 10<sup>-1</sup>
 (B) 1 × 10<sup>-3</sup> Which acid is almost completely ionized in a dilute solution at 298K? (A) basic and has a pH of 9 (B) basic and has a pH of 5 (C) acidic and has a pH of 9 (D) acidic and has a pH of 5 (B) chlorate (D) perchloride (A)CH,COOH (C) H.PO. (C)  $1 \times 10^{-11}$ (D)  $1 \times 10^{-13}$ (B) H,S (D)HNO, 11. Which pH indicates a basic solution? (A)1 (C)7 (B) 5 (D)12 5. What is the pH of a 0.01 M solution of HNO<sub>3</sub>? (C) 13 (D) 14 (A)1 (B)2 12. Which of these pH numbers indicates the highest level of acidity?
(A) 5 (C) 10 (C) 10 (D) 12 6 = Which reaction represents the process of neutralization? (B)8  $(A)Mg(s) + 2 HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$ 13. Which statement describes the characteristics of an Arrhenius base? (B) HCl(aq) + KOH(aq)  $\rightarrow$  KCl(aq) + H<sub>2</sub>O( (A) It changes blue litmus to red and has a pH less than 7. (c)  $Pb(NO_3)_2(aq) + CaCl(aq) \rightarrow Ca(NO_3)_2(aq) - Ca(NO_3)_2(aq)$ (B) It changes blue litmus to red and has a pH greater than 7. PbCL(s) (D)2 KClO<sub>3</sub>(s)  $\rightarrow$  KCl(s) + 3 O<sub>2</sub>(g) (C) It changes red litmus to blue and has a pH less than 7. 7. Which acid-base pair will always undergo a reaction that produces a neutral solution? (D) It changes red litmus to blue and has a pH greater than 7. (A) a weak acid and a weak base (B) a weak acid and a strong base 14. Red litmus will turn blue when placed in an (C) a strong acid and a weak base (D) a strong acid and a strong base aqueous solution of (A)KCI (C) CH.OH (B) KOH (D) CH3COOH Chemistry- Unit 13 DRAFT 29 DRAFT 28 Chemistry- Unit 13 Nuclear Chemistry Unit 14 The graph below represents the decay curve of a radioactive isotope. The half-life of this isotope 18. According to the equation: Which of these types of nuclear radiation has the greatest penetrating power? 8. Given the reaction: is  $X \rightarrow {}^{208}_{e2}Pb + {}^{4}_{2}He$ greatest p (A)alpha  $^{24}_{11}Na \rightarrow ^{24}_{12}Mg + ^{0}_{-1}e$ (C) neutron The nucleus correctly represented by X is (B) beta (D) gamma (A) <sup>204</sup><sub>80</sub>Hg (B) <sup>212</sup><sub>84</sub>Po (C) <sup>204</sup><sub>84</sub>Bi (D) <sup>212</sup><sub>84</sub>Pb This reaction is best described as (A) alpha decay (C) fission 2. Which type of radioactive emission has a positive charge and weak penetrating power? (B) beta decay (D) fusion (A)alpha particle (C) gamma ray 9. Which of these types of radiation has the (B) beta particle (D) neutron 19. Given the reaction: greatest penetrating power? 3. Which list of particles is in order of increasing (A)alpha (C) gamma  $^{234}_{91}Pa \rightarrow X + ^{0}_{-1}e$ (B) beta (D) positron (A) 8 years (C) 45 years (A) proton  $\rightarrow$  electron  $\rightarrow$  alpha particle (D)60 years (B) 30 years When the equation is correctly balanced the nucleus represented by X is Which type of radiation has neither mass nor charge?
 (A) gamma
 (C) alpha 14. The half-life of a radioactive isotope is 20.0 minutes. What is the total amount of a 1.00-gram sample of this isotope remaining after 1.00 hour? (B) proton →alpha particle → electron (C) electron  $\rightarrow$  proton  $\rightarrow$  alpha particle (D) alpha particle  $\rightarrow$  electron  $\rightarrow$  proton  $\begin{array}{c} \text{(A)}_{92}^{234}\text{U} \\ \text{(B)}_{92}^{235}\text{U} \\ \text{(C)}_{90}^{230}\text{Th} \\ \text{(D)}_{90}^{232}\text{Th} \end{array}$ (B) neutron (D) beta 4. Which type of radiation is identical in mass and charge to a helium nucleus? In the diagram below, the radiation from a radioactive source is being separated as it passes between electrically charged plates. What are the three types of radiation observed on the detector? (A) 0.500 g 11. (C) 0.250 g (A) alpha (C) positron (B) 0.333 g (D)0.125 g 20. In the equation (B) beta (D) proton 15. An original sample of a radioisotope had a mass of 10 grams. After 2 days, 5 grams of the radioisotope remains unchanged. What is the half-life of this radioisotope?  $X \rightarrow \frac{226}{88} \text{Ra} + \frac{4}{2} \text{He}$ 5. Given the reaction: The symbol X represents  $^{226}_{88}$ Ra  $\rightarrow ^{222}_{86}$ Rn + X  $(A)_{\substack{86\\90}}^{222}$ Th (B) $_{\substack{90\\90}}^{230}$ Th (C) $_{\substack{86\\90}}^{222}$ Rn (D) $_{\substack{90\\90}}^{230}$ Rn-(A)1 day (C) 5 days RADIOACTIVE Which type of emanation is represented by X? (B) 2 days (D)4 days Ð PATHWA (A) alpha particle (C) proton ..... 16. In the equation: (B) beta particle (D) positron Θ -----21. Which equation represents a fusion reaction?  $^{234}$ Pa  $\rightarrow ^{234}$ U + X (A)  ${}_{2}^{1}H + {}_{1}^{2}H \rightarrow {}_{2}^{4}He$ (B)  ${}_{6}^{1}C \rightarrow {}_{-1}e + {}_{1}^{4}N$ (C)  ${}_{22}^{23}e \cup + {}_{2}^{4}He \rightarrow {}_{24}^{241}Pu + {}_{0}^{1}n$ 6. Which equation represents alpha decay?  $\begin{array}{l} \text{(A)} \ _{49}^{116} \text{In} \rightarrow \ _{50}^{150} \text{Sn} + X \\ \text{(B)} \ _{20}^{224} \text{Rn} \rightarrow \ _{91}^{234} \text{Pa} + X \\ \text{(C)} \ _{19}^{86} \text{K} \rightarrow \ _{18}^{38} \text{Ar} + X \\ \text{(D)} \ _{222}^{226} \text{Rn} \rightarrow \ _{84}^{218} \text{Po} + X \end{array}$ The X represents a (A) helium nucleus (C) proton (A)X = alpha, Y = beta, Z = gamma (B)X = gamma, Y = beta, Z = alpha (C)X = beta, Y = gamma, Z = alpha (D)X = gamma, Y = alpha, Z = beta (C)  $_{92}$ (D)  $_{0}^{1}n + _{13}^{27}A1 \rightarrow _{13}^{24}Na + _{2}^{4}He$ (B) beta particle (D) neutron 17. Given the nuclear reaction: 7. In the reaction  $^{239}_{93}$ Np  $\rightarrow ^{239}_{94}$ Pu + X, what does X 22. Which type of reaction produces energy and represent?  $^{235}_{92}$ U +  $^{1}_{0}$ n  $\rightarrow ^{138}_{56}$ Ba +  $^{95}_{36}$ Kr +  $3^{1}_{0}$ n + energy After 30 days, 5.0 grams of a radioactive isotope remains from an original 40.-gram sample. What is the half-life of this element? 12. (A) a neutron (C) an alpha particle intensely radioactive waste products? (A) fusion of tritum and deuterium (B) fission of uranium (C) burning of heating oil (D) burning of wood (B) a proton (D) a beta particle This equation can best be described as (A) 5 days (C) 15 days (A) fission (C) natural decay (B) fusion (D) endothermic (B) 10 days (D) 20 days

Chemistry- Unit 14

DRAFT

1

26

Chemistry- Unit 14

DRAFT



Which type of reaction does the diagram illustrate? (A) fission (C) alpha decay (D) beta decay (B) fusion -----

24. The radioactive isotope carbon-14 can be used for (A)determining the age of a sample (B)determining medical disorders (C) controlling fission reactions (D)controlling speeds of neutrons 25. Radiation used in the processing of food is

intended to (A) increase the rate of nutrient decomposition (B) kill microorganisms that are found in the (B) kill microorganisms that are found in the food (C) convert ordinary nutrients to more stable forms (D) replace chemical energy with nuclear energy

intended to

Chemistry- Unit 14

DRAFT

28

an an the second se