Unit 2 – Ch 5.1 – Wave Properties & Atomic Spectra

WAVE PROPERTIES:

•	<u>Wavelength</u> – Lamda () –		
	o Unit =		
•	<u>Frequency</u> – Nu () –		
	o Unit =		
•	of wavelength and freq	uency =	
	 C = Speed of Light: 		
	• FORMULA:		
•	Proportional:		
	 As wavelength 	, frequency	
Ex #1	: What is the wavelength of an electromagnetic What type of wave is emitted?	wave with a frequency o	of 1.50 x 10 ¹³ Hz (s ⁻¹) ?
Ex #2	: Calculate the frequency of a photon (light) with What type of wave is emitted?	າ a wavelength of 4.34 x	: 10 ⁻⁷ m.
<u>PART</u>	ICLE NATURE OF LIGHT: QUANTUM THEORY: Max: o QUANTUM – Minimum	quantity	or

by an atom to ______ different ______ of photons (light).

Quantum of energy is ______ proportional to ______ of photon emitted.

PARTICLE NATURE OF LIGHT: QUANTUM THEORY (Continued:

- Planck's Constant:

 FORMULA:
 E =
 h =
 v =
 Planck's Constant =
 " J " = SI unit of energy (______)

 Einstein's Contribution:

 Confirmed that light as BOTH_____ and _____ natures.
 - <u>PHOTON</u>:
- Ex #3: Tiny water droplets in air disperse white light into a rainbow. What energy is emitted from a violet photon that is $7.23 \times 10^{14} \text{ s}^{-1}$?

Ex #4: A sodium-vapor street light emits yellow light at a wavelength of 589 nm. What energy of sodium atom is involved in this emission?