Unit 9: Ch 18 – Chemical Equilibrium ## **EQUILIBRIUM**: | > | Chemical reactions are oftenProducts can | | | | • | | | | |--------------|---|----------------------------|----------------------------|---------------|--------------|-----------|--------------------|--------------| | | | | | | react to | | reactants. | | | > | Equilib | orium <i>(EQ)</i> is estal | olished when | | | | _ in reactant | and | | | produ | ct | | | _· | | | | | > | At equ | iilibrium <i>(EQ),</i> | and | remain | | , or | | with time | | | 0 | This | mea | an that | | • | | | | > | At equ | illibrium <i>(EQ),</i> the | | of the | | and | | _ are equal. | | | 0 | Occurs at the | 1 | ime. | | | | | | <u>EQUIL</u> | IBRIUM | EXPRESSION: | | | | | | | | > | How fa | ar a reaction proc | eeds to | is <i>e</i> | expressed by | | | | | > | EQUIL | IBRIUM <i>EXPRESSI</i> | ON: | | | | | | | | 0 | Lower Case = | | | | | | | | | 0 | Equilibrium <i>(EQ)</i> | Constant (|) shows the _ | | of | | | | | | то | · | | | | | | | | 1.7 | | | | | | | | | > | K = | | | | | | | | | | | NOTE: | and | | | ingluda | d in the equilibri | ium /501 | | | 0 | NOTE: | | | | | a in the equilibr | ium (EQ) | | | | expressions; ON | LY | ar | nd | • | | | | | | | re
ne <i>EQ</i> constai | | | concentra | tions | | ## **EQUILIBRIUM EXPRESSION:** - \triangleright Ex #1: N_{2 (g)} + 3 H_{2 (g)} <--> 2 NH_{3 (g)} - o EQ Expression: - \triangleright Ex #2: SnO_{2 (s)} + 2 CO (g) <--> Sn (s) + 2 CO_{2 (g)} - o EQ Expression: - > Ex #3: KCl (I) + Na (s) <--> NaCl (I) + K (g) - o EQ Expression: ## **EQUILIBRIUM CONSTANT**: - \triangleright Ex #4: CO (g) + 3 H₂(g) <--> CH₄(g) + H₂O (g) - \circ What is the EQ Constant if concentrations at EQ is as follows: [CO] = 0.613 M, [H₂] = 1.839 M, [CH₄] = 0.387 M, and [H₂O] = 0.387 M? - EQ Expression: - \succ K = 1 \rightarrow _____ are ____. - ightarrow K > 1 ightarrow reaction is favored (producing more _____) ightarrow K < 1 ightarrow ______ reaction is favored (producing more _____)