Unit 11: Ch 16 – Entropy & Potential Energy Diagrams

	_	/ 1	г١.	.,	\sim							· / -
ĸ	⊢ \	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- \	N/		-	-	M	Н	Δ	LP	ν.
	_ \	, ,,	∟ v	•	v		_			_		

>	Enthalpy (ΔH) -		of heat content	_ or
	o Nature	favors	energy	
	• .	thermic $ ightarrow$ _		
KINET	ICS:			
>	Collision (Kinet	:ic) Theory – In ordei	to, particles must _	with sufficient
ENTRO	OPY:			
>	Entropy (ΔS) – N	Measure of	or	of particles.
	o Nature	favors	disorder/randomness	
	• .	ent	ropy →	
>	Which has MO	<u>RE</u> disorder? (Highe	· ΔS)	
	o #1: Incr	rease or decrease in t	emperature?	
	• ,	Answer:	temperature	
		• Why? →		
	。 #2: Rea	actants or products?	$2 \text{ NH}_{3 \text{ (g)}} \rightarrow 1 \text{ N}_{2 \text{ (g)}} + 3 \text{ H}_{2 \text{ (g)}}$	
	• ,	Answer:		
		• Why? →		
	o #3: Incr	rease or decrease in (entropy?	
	- 9	Solid → Liquid =		
	- 1	Liquid → Gas =		
	• 1	However, ΔS g → g _	ΔS s → I or I → g	
		• Why2 →		

POTENTIAL ENERGY DIAGRAMS:

	Activated Complex	<u>'A.C.)</u> – Old	bonds are	and <i>new</i>				
	bonds are	·						
	o(pe	eak) energy point along	; thep	ath.				
>	Activation Energy (E	<u>a</u>)	energy required to	the reacti	on to form the			
	○ E _a (reactants							
>	Enthalpy of Reaction	<u>1 (ΔΗ_{rxn})</u> :						
	O ΔH _{rxn} =							
	■ ENDO	thermic =						
	EXO thermic =							
	•	Assume moving in th	e direction of	reaction.				
FACTO	DRS THAT <i>INCREASE</i> R	ATE OF REACTION:						
>	1. Surface Area:							
	0	surface area =	number of po	ints of collision				
>	2. Temperature:							
	0	temperature =	kinetic energ	y =	# of collisions			
>	3. Concentration:							
	0	concentration =	# of particle	es =	# of collisions			
>	4. Adding Catalyst:							
		activation energy (E_a)	= activated	complex <i>(AC)</i> =				