<u>Unit 11: Ch 16 – Calorimetry & Enthalpy Heating Curves</u> **HEATING CURVES & ΔH**: > Draw and label the <u>HEATING CURVE</u> below: Question at Hand: How is the total enthalpy change (ΔH) calculated for a substance whose temperature change *includes* a change in state? \triangleright Ex: What is the \triangle H for 10.0 grams of water with a total \triangle T from -20.0°C to 50.0°C?

The _____ ΔH will be the _____ of ΔH of all ΔT plus ΔH of all phase changes.

$\Delta H_1 =$	
$\Delta H_2 =$	→ Total ΔH =
$\Delta H_3 =$	
CALORIMETRY: Science ofhe	eat based on observing
when a system or	energy as heat.
CALORIMETER: Used to determine the	of an object by measuring the
when an object's () known mass at <i>higher temperature</i> is
placed in a known mass of water (), and both reach a final equilibrium temp.
Heat by Object =	Heat by Water
o=_	<u> </u>
0	
	d then placed into 100 g of water (initially at 23.7°C). The equilibrium temperature of 27.8°C.