Unit 9: Ch 15 - Molarity \& Dilutions / How to Prepare \& Dilute Solutions

CONCENTRATION:
$>$ DEFINITION -

- Concentrated Solution: \qquad
- Diluted Solution: \qquad

MOLARITY (M) -

- " \boldsymbol{M} " - Read as \qquad
- EQUATION:
- Ex \#1: What is the concentration (M) of a solution that contains 5.00 grams of $\mathrm{NiCl}_{2} \bullet 6 \mathrm{H}_{2} \mathrm{O}$ dissolved in water to prepare 250 mL of solution?
- Ex \#2: How many grams of NaOH are required to prepare $400 . \mathrm{mL}$ of 3.00 M NaOH solution?

DILUTING SOLUTIONS:

$>$ DILUTION -

○ \qquad relationship expressed in DILUTION formula:

- EQUATION:

○ KEEP IN MIND:

- \qquad \& \qquad $=$ \qquad solution ; \qquad \& \qquad $=$ \qquad solution
- \qquad \# of \qquad of SOLUTE \qquad change during dilution.
- Moles \qquad solution $=$ Moles \qquad dilution

○ Ex \#1: If you dilute 20.0 mL of a 3.50 M solution to prepare a 100 mL , what is the concentration of the dilute solution?

○ Ex \#2: What volume of a $5.00 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution is needed to prepare 100 mL of $0.250 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution?

PREPARING SOLUTIONS: How would you prepare 100 mL of 1.50 M aqueous solution of sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$?

Step \#1: Convert \qquad \rightarrow \qquad ; WHY? : \qquad ; 100 mL soln = \qquad

Step \#2: Calculate \qquad of \qquad \rightarrow

Step \#3: Calculate \qquad (grams) of \qquad \rightarrow

Step \#4: \qquad out the calculated mass of the \qquad

Step \#5: Transfer massed \qquad into a \qquad flask of needed \qquad .

Step \#6: Add \qquad (water) to fill bulb \qquad and \qquad to completely
\qquad solute.

Step \#7: Add enough solvent until \qquad line is reached \qquad .

DILUTING SOLUTIONS:

Step \#1: Extract wanted/desired volume of solution of desired molarity.
Step \#2: Transfer to another volumetric flask and add enough solvent (water) to reach graduation mark.
Step \#3: Fill to exact graduation mark of the volumetric flask.

