Unit 8: Ch 14 - Gas Laws Part 2: Combined Gas/Ideal Gas/Partial Pressure

COMBINED GAS LAW:

$>$ \qquad to one another remains the \qquad :

- Pressure - Volume \rightarrow \qquad related
- Volume-Temperature \rightarrow \qquad related
- Pressure - Temperature \rightarrow \qquad related
$>$ FORMULA:
- Ex \#1) A gas at 110 kPa and $30.0^{\circ} \mathrm{C}$ fills a container with an initial volume of 2.00 L . If the temperature and pressure are raised to $80.0^{\circ} \mathrm{C}$ and 440 kPa , respectively, what is the new volume?

IDEAL GAS LAW:

$>$ Describes the \qquad behavior of gases.

- Includes temperature, volume, pressure, and \qquad .

FORMULA:

- $P=$ \qquad
- $\mathrm{V}=$ \qquad
- $\mathrm{n}=$ \qquad

IDEAL GAS CONSTANT "R" :

- \qquad " depends on the unit of \qquad .

Pressure Unit	"R" Value	"R" Unit

$>$ Ex \#2) How many moles of gas are contained in a 3.00 L vessel at $3.00 \times 10^{2} \mathrm{~K}$ and 1.50 atm ?

DALTON'S LAW OF PARTIAL PRESSURE:

> When \qquad gases exert pressure \qquad of other gases present at
the same \qquad and \qquad .
> "PARTIAL" Pressure:

- Pressure exerted by a \qquad gas in a mixture.
"TOTAL" Pressure:
- The \qquad of all \qquad pressures.

> FORUMULA:

- Ex \#3) What is the pressure (kPa) of oxygen in a mixture of $\mathrm{He}, \mathrm{CH}_{4}, \mathrm{NH}_{3}$, and CO_{2} if the total pressure is 545 mmHg ? Gas pressures are $145 \mathrm{mmHg}, 156 \mathrm{mmHg}, 275 \mathrm{mmHg}$, and 392 mmHg , respectively.

MIXED PRACTICE:

1) A gas of unknown pressure occupies 0.766 L at 298 K and is then tested at 32.6 kPa and occupies 0.644 L at 303 K . What was the original pressure?
2) What temperature is required for 0.0470 moles of gas to fill a balloon to 1.20 L under 0.988 atm ?
3) What is the total pressure of a gas mixture at $2.44 \mathrm{kPa}, 3.23 \mathrm{kPa}, 3.54 \mathrm{kPa}, 5.83 \mathrm{kPa}$, and 1.85 kPa ?
