Unit 8: Ch 14 – Gas Laws Pt 1: Avogadro's/Boyle's/Charles's/Gay-Lussac's

Gases Denave	differently based on conditions or	f,	
	, and	_ (moles) of gas.	
GAS LAWS PT 1:			
> <u>#1) AVOGAD</u>	RO'S LAW:		
o Under	equal conditions of STANDARD	anc	J
	Equal of gases	() contain <i>equal</i> _	
•	FORMULA:		
➢ <u>#2) BOYLE'S I</u>	<u>.AW</u> :		
0	of gas varies	with app	lied
•	• Kept		
•	pressure = _	volum	ne
•	FORMULA:		
 Ex #1) reduce 	Chlorine gas occupies 946 mL at 7 ed to 154 mL?	'26 mmHg. What is the pre	essure of chlorine gas if it is
	C I A)M/		
≻ <u>#3) CHARLES'</u>	<u>S LAVV</u> :		

■ ______- - Kept ______.

______temperature = ______volume

• FORMULA:

• Ex #2) Carbon monoxide gas occupies 3.20 L at 125 °C. At what temperature will the gas occupy 1.54 L?

#4) GAY-LUSSAC'S LAW:

0		of gas varies	to	temperature.
	•	Kept	·	
	•	temperature =	pre	essure
	FORMULA:	:		

• Ex #3) Pressure of gas inside a tank is 3.20 atm at 22.0 °C. If the temperature rises to 60.0 °C, what will be the gas pressure inside the tank?

MIXED PRACTICE:

- 1) A sample of gas inside a sealed container has a pressure of 125 kPa at 30.0 °C. If the pressure increases to 201 kPa, what is the new temperature?
- 2) A helium gas balloon is compressed from 4.00 L to 2.50 L at constant temperature. If the pressure in the 4.00 L is 210 kPa, what is the pressure at 2.50 L?
- 3) A sample of gas at 40.0 °C occupies 2.32 L. If the temperature is raised to 75.0 °C, what will be the volume, assuming pressure remains constant?