<u>Unit 7 – Ch 12 – Stoichiometry</u>

REVIEW OF MOLE CONVERSIONS:

≻ 1)1m	ole =
0	\rightarrow Elements
0	\rightarrow Covalent Compounds
0	$_$ Ionic Compounds
0	\rightarrow Charged particles of formula units (F.U.)
≻ 2)1m	ole =
0	Unit:
STOICHIOMET	<u>'RY</u> :
> <u>DEFINI</u>	<u>TION</u> –
> <u>NEW R</u>	ATIO:
0	Mole <i>coefficient</i> of substance = Mole <i>coefficient</i> of
	 Requires a chemical <i>equation</i>.
> <u>MOLE</u>	RATIO: APPLICATION
0	$\underline{\qquad} Mg_{(s)} + \underline{\qquad} O_{2(g)} \rightarrow \underline{\qquad} MgO_{(s)}$
	 Mole Ratios: mol Mg = mol O₂
	mol Mg = mol MgO
	mol O ₂ = mol MgO
	NEEDED: Balanced indicate of
	AND

Unit 6 – MOLE CONVERSIONS

- Starting substance is ______ as wanted substance.
- > _____ balanced chemical equation.
- diagram (simplified)

Unit 7 - STOICHIOMETRY

- → Starting substance is ______ from wanted substance.
- ightarrow Balanced chemical equation
- \rightarrow _____ diagram (*Expanded*)

Ex #1) Mole <--> Mole Stoich (2-step)

How many moles of nitrogen gas are needed to react with hydrogen gas to produce 1.50 moles of ammonia gas (NH₃)?

Ex #2) Mole <--> Mass Stoich (3-step)

How many grams of ammonium sulfate are produced from a reaction of 3.75 moles of sulfuric acid and ammonia gas?

Ex #3) Mole <--> Particle Stoich (3-step)

In the combustion of pentane, C_5H_{12} , how many molecules of carbon dioxide are produced from 5.35 x 10^{24} moles of pentane?

Ex #4) Mass <--> Mass Stoich (4-step)

How many grams of nitrogen gas are needed to react with hydrogen gas to produce 5.35 grams of ammonia gas?

Ex #5) Mass <--> Particle Stoich (4-step)

How many formula units of aluminum bromide are produced by the neutralization of 3.50 grams of hydrobromic acid and aluminum hydroxide?

Ex #6) Particle <--> Particle Stoich (4-step)

How many formula units of lead (II) phosphate are produced by a single replacement reaction of 3.50 atoms of lead metal and phosphoric acid?