<u>Unit 7 – Ch 12 – Stoichiometry</u>

REVIEW OF MOLE CONVERSIONS:

≻ 1)1m	ole =		
0	\rightarrow Elements		
0	\rightarrow Covalent Compounds		
0	$_$ Ionic Compounds		
0	\rightarrow Charged particles of formula units (F.U.)		
≻ 2)1m	ole =		
0	Unit:		
STOICHIOMET	<u>'RY</u> :		
> <u>DEFINI</u>	<u>TION</u> –		
> <u>NEW R</u>	ATIO:		
0	Mole <i>coefficient</i> of substance = Mole <i>coefficient</i> of		
	 Requires a chemical <i>equation</i>. 		
> <u>MOLE</u>	RATIO: APPLICATION		
\circ Mg (s) + O _{2 (g)} \rightarrow MgO (s)			
Mole Ratios: mol Mg = mol O ₂			
	mol Mg = mol MgO		
	mol O ₂ = mol MgO		
	NEEDED: Balanced indicate of		
	AND		

Unit 6 – MOLE CONVERSIONS	Unit 7 - STOICHIOMETRY
 Starting substance is 	→ Starting substance is
as wanted substance.	from wanted substance.
balanced chemical equation.	ightarrow Balanced chemical equation
diagram (simplified)	\rightarrow diagram (Expanded)
Ex #1) <i>Mole</i> <> <i>Mole</i> Stoich (2-step) How many moles of nitrogen gas are needed to react with hy	
Ex #2) <i>Mole</i> <> <i>Mass</i> Stoich (3-step) How many grams of ammonium sulfate are produced from a	
Ex #3) <i>Mole</i> <> <i>Particle</i> Stoich (3-step) In the combustion of pentane, C_5H_{12} , how many molecules opentane?	
Ex #4) <i>Mass</i> <> <i>Mass</i> Stoich (4-step) How many grams of nitrogen gas are needed to react with hy	_ N _{2 (g)} + H _{2 (g)} → NH _{3 (g)} /drogen gas to produce 5.35 grams of ammonia gas?

Ex #5) Mass <--> Particle Stoich (4-step) $_$ HBr + $_$ Al(OH)₃ \rightarrow $_$ AlBr₃ + $_$ H₂O How many formula units of aluminum bromide are produced by the neutralization of 3.50 grams of hydrobromic acid and aluminum hydroxide?

Ex #6) Particle <--> Particle Stoich (4-step) Pb + $H_3PO_4 \rightarrow H_{2 (g)} + Pb_3(PO_4)_2$ How many formula units of lead (II) phosphate are produced by a single replacement reaction of 3.50 atoms of lead metal and phosphoric acid?