Unit 7 - Ch 12 - Stoichiometry

REVIEW OF MOLE CONVERSIONS:
> 1) $1 \mathrm{~mole}=$

○ \qquad \rightarrow Elements

○ \qquad \rightarrow Covalent Compounds

○ \qquad \rightarrow Ionic Compounds

- \qquad \rightarrow Charged particles of formula units (F.U.)
> 2) $1 \mathrm{~mole}=$ \qquad
- Unit: \qquad

STOICHIOMETRY:

$>$ DEFINITION -

NEW RATIO:

- Mole coefficient of \qquad substance $=$ Mole coefficient of \qquad
- Requires a \qquad chemical equation.
> MOLE RATIO: APPLICATION
\circ $\mathrm{Mg}(\mathrm{s})+$ \qquad $\mathrm{O}_{2(\mathrm{~g})} \rightarrow$ \qquad MgO (s)
- Mole Ratios: \qquad $\mathrm{mol} \mathrm{Mg}=$ \qquad mol O 2
\qquad $\mathrm{mol} \mathrm{Mg}=$ \qquad mol MgO
\qquad $\mathrm{mol} \mathrm{O}=$ \qquad mol MgO
$>$ NEEDED: Balanced \qquad indicate \qquad of
\qquad .

Unit 6 - MOLE CONVERSIONS

> Starting substance is \qquad as wanted substance.
\qquad balanced chemical equation.
$>$ \qquad diagram (simplified)

Unit 7 - STOICHIOMETRY

\rightarrow Starting substance is \qquad from wanted substance.
\rightarrow Balanced chemical equation \qquad .
\rightarrow \qquad diagram (Expanded)

Ex \#1) Mole <--> Mole Stoich (2-step) \qquad $\mathrm{N}_{2}(\mathrm{~g})+$ \qquad $\mathrm{H}_{2(\mathrm{~g})} \rightarrow$ \qquad NH_{3} (g)
How many moles of nitrogen gas are needed to react with hydrogen gas to produce 1.50 moles of ammonia gas $\left(\mathrm{NH}_{3}\right)$?

Ex \#2) Mole <--> Mass Stoich (3-step) \qquad $\mathrm{H}_{2} \mathrm{SO}_{4}+$ \qquad $\mathrm{NH}_{3(\mathrm{~g})} \rightarrow$ \qquad $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
How many grams of ammonium sulfate are produced from a reaction of 3.75 moles of sulfuric acid and ammonia gas?

Ex \#3) Mole <--> Particle Stoich (3-step) \qquad $\mathrm{C}_{5} \mathrm{H}_{12}+$ \qquad $\mathrm{O}_{2(\mathrm{~g})} \rightarrow$ \qquad $\mathrm{CO}_{2(\mathrm{~g})}+$ \qquad $\mathrm{H}_{2} \mathrm{O}$ In the combustion of pentane, $\mathrm{C}_{5} \mathrm{H}_{12}$, how many molecules of carbon dioxide are produced from 5.35×10^{24} moles of pentane?

Ex \#4) Mass <--> Mass Stoich (4-step) \qquad $\mathrm{N}_{2(\mathrm{~g})}+$ \qquad $\left.\mathrm{H}_{2 \mathrm{~g}} \mathrm{~g}\right) \rightarrow$ \qquad $\mathrm{NH}_{3}(\mathrm{~g})$
How many grams of nitrogen gas are needed to react with hydrogen gas to produce 5.35 grams of ammonia gas?

Ex \#5) Mass <--> Particle Stoich (4-step) \qquad $\mathrm{HBr}+$ \qquad $\mathrm{Al}(\mathrm{OH})_{3} \rightarrow$ \qquad $\mathrm{AlBr}_{3}+$ \qquad $\mathrm{H}_{2} \mathrm{O}$
How many formula units of aluminum bromide are produced by the neutralization of 3.50 grams of hydrobromic acid and aluminum hydroxide?

Ex \#6) Particle <--> Particle Stoich (4-step) \qquad $\mathrm{Pb}+$ \qquad $\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow$ \qquad $\mathrm{H}_{2(\mathrm{~g})}+$ \qquad $\mathrm{Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
How many formula units of lead (II) phosphate are produced by a single replacement reaction of 3.50 atoms of lead metal and phosphoric acid?

