Unit 6: Ch 11 - Empirical Formulas \& Hydrates

PART 1 - EMPIRICAL FORMULAS (E.F.):

$>$ DEFINITION \rightarrow

MOLECULAR FORMULAS (M.F.):

DEFINITION \rightarrow

- M.F. can be the \qquad as the E.F.

MOLECULAR	EMPIRICAL Formula (MF)

CALCULATING EMPIRICAL FORMULAS (EF):

> ** Step \#1: \qquad given \qquad , convert to \qquad (assume out of \qquad).

- Ex: Write the E.F. of a compound that contains: 43.6 \% P and 56.4 \% O.
- $P=$ \qquad $=$ \qquad
\qquad
\qquad
> Step \#2: Calculate the \qquad of \qquad atom from grams.
- PROCESS: \qquad
- Ex: Write the E.F. of a compound that contains: 43.6 \% P and 56.4 \% O.
- $P=$
$0=$

Step \#3: Divide \qquad mole by the \qquad mole.

- This produces a \qquad whole number ratio.
- Ex: Write the E.F. of a compound that contains: 43.6 \% P and 56.4 \% O.
- $\mathrm{P}=$
$0=$
\qquad are \qquad whole numbers, \qquad ALL ratios by the
\qquad common factor to give all whole numbers.
- May round prior to applying \qquad within \qquad of nearest \qquad or \qquad -
- This produces a \qquad whole number ratio.
- Ex: Write the E.F. of a compound that contains: 43.6 \% P and 56.4 \% O.
- $\mathrm{P}=$ \qquad $=$ \qquad $0=$ \qquad $=$ \qquad
> Step \#5: TRUE whole number ratios become \qquad in final EMPIRICAL FORMULA (EF).
- Ex: Write the E.F. of a compound that contains: 43.6 \% P and 56.4 \% O.
- Empirical Formula (EF) = \qquad Name: \qquad

PRACTICE: Ex \#2) Write empirical formula (EF) of a compound that contains: $67.6 \mathrm{~g} \mathrm{Hg}, 10.8 \mathrm{~g} \mathrm{~S}$, and 21.6 g O .

PART 2 - HYDRATES:

DEFINITION \rightarrow

- General Formula: \qquad
- Ex: \qquad \rightarrow Name $=$ \qquad

CALCULATING HYDRATES:

> Step \#1: Calculate \qquad between \qquad AND \qquad sample.

- Solves for the amount of \qquad .
> Step \#2: Calculate \qquad of the \qquad sample AND amount of \qquad .
> Step \#3: Divide by the \qquad to get the \qquad .
- NOTE: \qquad compound nomenclature can \qquad have \qquad .
$>{ }^{* *}$ Step \#4: IF given \qquad or \qquad of the \qquad AND
\qquad , solve as a regular EMPIRICAL FORMULA problem.

HYDRATES PRACTICE:

Ex \#1: A 344 gram sample of hydrated calcium sulfate is heated to vaporization. Once heated, the sample has a mass of 272 grams.
$>$ What is the mole ratio between ionic compound AND water?
$>$ What is the hydrate name AND formula?

Ex \#2: What is the formula of a hydrate that is $433.5 \mathrm{~g} \mathrm{Mo}_{2} \mathrm{~S}_{5}$ and $66.5 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$?

