Unit 5: Ch 10 – Word Equations & Chemical vs Nuclear Reactions # **DETERMINING PHYSICAL STATES:** | | Ionic Compounds: ALL | unless dissolved in water | | |-------------|---|---|-------------------------| | | o Ex) | Ex) | | | > | Acids: ALL | · | | | | o Ex) | Ex) | | | > | Binary Covalent Compounds: | Ex) | | | > | Ternary Covalent Compounds | s:OR | Ex) | | > | Diatomic Molecules: ALWAYS | except | and | | > | Metals: ALWAYS | except | · | | <u>CHEM</u> | ICAL EQUATION → WORD EQU | JATION: | | | > | Chemical Equation: KC | $CIO_{3 (s)} \rightarrow \underline{\hspace{1cm}} KCI_{(s)} + \underline{\hspace{1cm}} O_{2 (g)}$ | | | | Word Equation: | | | | > | Chemical Equation: HO | Cl (aq) + NaOH (aq) → NaCl (aq) + | H ₂ O (I) | | WORE | DEQUATION → CHEMICAL EQU | JATION: | | | > | Word Equation: Sodium me hydrogen gas. | etal reacts with liquid water to produce aqueo | us sodium hydroxide and | | | Chemical Equation: | | | | > | Word Equation: Solid carbo | n reacts with oxygen gas to produce carbon d | ioxide gas. | | | Chemical Equation: | | | #### **CHEMICAL VS NUCLEAR REACTIONS:** ## > CHEMICAL REACTIONS: | o Forn | ıs | chemical | substances | |--------|----|----------|------------| |--------|----|----------|------------| ### > NUCLEAR REACTIONS: | \circ | Forms NEW | OR different | | |---------|-----------------|--------------|---| | \circ | I OIIIIS IVE VV | On anicicit | • | - Very _____ energy changes (_____, ___, ___ emitted) and thus becomes _____. - Change in _____ and ____ in the _____. - Nuclear Fission: Energy released is ______ times _____ than chemical reactions. - o **Nuclear Fusion**: Energy released is ______ times _____ than *fission*. # BALANCING CHEMICAL EQUATIONS/REACTION TYPES/PREDICTING PRODUCTS PRACTICE: 1. ___ Al + ___ $$O_2 \rightarrow$$ Reaction Type: ____ 2. $$__Pb(NO_3)_2 + ___KBr \rightarrow$$ Reaction Type: $___$ 3. $$AI(OH)_3 \rightarrow$$ Reaction Type: ______ 4. $$\underline{\hspace{1cm}}$$ Zn + $\underline{\hspace{1cm}}$ BaCl₂ \Rightarrow Reaction Type: $\underline{\hspace{1cm}}$ 5. ____ $$C_4H_{10} +$$ ____ $O_2 \rightarrow$ Reaction Type: _____ 7. ____ Ba + ____ $$H_2O \rightarrow$$ Reaction Type: _____ 9. $$ZnO + H_2O \rightarrow$$ Reaction Type: